Comparative Transcriptome Analysis Provides Insights into the Effect of Epicuticular Wax Accumulation on Salt Stress in Coconuts

被引:1
|
作者
Sun, Xiwei [1 ]
Kaleri, Ghulam Abid [2 ]
Mu, Zhihua [2 ]
Feng, Yalan [1 ]
Yang, Zhuang [2 ]
Zhong, Yazhu [1 ]
Dou, Yajing [1 ]
Xu, Hang [2 ]
Zhou, Junjie [2 ]
Luo, Jie [2 ]
Xiao, Yong [2 ]
机构
[1] Chinese Acad Trop Agr Sci, Coconut Res Inst, Wenchang 571300, Peoples R China
[2] Hainan Univ, Coll Breeding & Multiplicat, Sanya 572025, Peoples R China
来源
PLANTS-BASEL | 2024年 / 13卷 / 01期
关键词
coconut; transcriptome; salt tolerance; REACTIVE OXYGEN; BIOSYNTHESIS; DROUGHT; ACYLTRANSFERASE; OVEREXPRESSION; DEFICIENCY; EXPRESSION; TOLERANCE; PROTEIN; LIPIDS;
D O I
10.3390/plants13010141
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The coconut is an important tropical economical crop and exhibits high tolerance to various types of salinity stress. However, little is known about the molecular mechanism underlying its salt tolerance. In this study, RNA-Seq was applied to examine the different genes expressed in four coconut varieties when exposed to a salt environment, resulting in the generation of data for 48 transcriptomes. Comparative transcriptome analysis showed that some genes involved in cutin and wax biosynthesis were significantly upregulated in salt treatment compared to the control, including CYP86A4, HTH, CER1, CER2, CER3, DCR, GPAT4, LTP3, LTP4, and LTP5. In particular, the expression of CER2 was induced more than sixfold, with an RPKM value of up to 205 ten days after salt treatment in Hainan Tall coconut, demonstrating superior capacity in salt tolerance compared to dwarf coconut varieties. However, for yellow dwarf and red dwarf coconut varieties, the expression level of the CER2 gene was low at four different time points after exposure to salt treatment, suggesting that this gene may contribute to the divergence in salt tolerance between tall and dwarf coconut varieties. Cytological evidence showed a higher abundance of cuticle accumulation in tall coconut and severe damage to cuticular wax in dwarf coconut.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Integrative Analysis of Transcriptome and Metabolome Provides Insights into the Saline-Alkali Stress in Alfalfa
    Zi, Y.
    Zhu, L.
    Ma, Y.
    Hong, L.
    Wang, S.
    Zhao, G.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2024, 71 (06)
  • [32] Integrative analysis of transcriptome and proteome provides insights into adaptation to cadmium stress in Sedum plumbizincicola
    Zhu, Yue
    Qiu, Wenmin
    He, Xiaoyang
    Wu, Longhua
    Bi, De
    Deng, Zhiping
    He, Zhengquan
    Wu, Chao
    Zhuo, Renying
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 230
  • [33] Comparative transcriptome analysis of the gills of Procambarus clarkii provides novel insights into the immune-related mechanism of copper stress tolerance
    Tang, Dan
    Shi, Xueling
    Guo, Huayun
    Bai, Yuze
    Shen, Chenchen
    Zhang, Yiping
    Wang, Zhengfei
    FISH & SHELLFISH IMMUNOLOGY, 2020, 96 : 32 - 40
  • [34] Comparative transcriptome analysis provides novel insights into the molecular mechanism of the silver carp (Hypophthalmichthys molitrix) brain in response to hypoxia stress
    Feng, Cui
    Li, Xiaohui
    Sha, Hang
    Luo, Xiangzhong
    Zou, Guiwei
    Liang, Hongwei
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2022, 41
  • [35] Transcriptome analysis of sweet Sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots
    Yang, Zhen
    Zheng, Hongxiang
    Wei, Xiaocen
    Song, Jie
    Wang, Baoshan
    Sui, Na
    PLANT AND SOIL, 2018, 430 (1-2) : 423 - 439
  • [36] Comparative transcriptome profiling provides insights into plant salt tolerance in seashore paspalum (Paspalum vaginatum)
    Wu, Peipei
    Cogill, Steven
    Qiu, Yijian
    Li, Zhigang
    Zhou, Man
    Hu, Qian
    Chang, Zhihui
    Noorai, Rooksana E.
    Xia, Xiaoxia
    Saski, Christopher
    Raymer, Paul
    Luo, Hong
    BMC GENOMICS, 2020, 21 (01)
  • [37] Combined transcriptome and proteome analysis provides insights into anthocyanin accumulation in the leaves of red-leaved poplars
    Chen, Xinghao
    Liu, Hanqi
    Wang, Shijie
    Zhang, Chao
    Liu, Lingyun
    Yang, Minsheng
    Zhang, Jun
    PLANT MOLECULAR BIOLOGY, 2021, 106 (06) : 491 - 503
  • [38] Combined analysis of the metabolome and transcriptome provides insight into seed oil accumulation in soybean
    Zhao, Xunchao
    Wang, Jie
    Xia, Ning
    Liu, Yuanyuan
    Qu, Yuewen
    Ming, Meng
    Zhan, Yuhang
    Han, Yingpeng
    Zhao, Xue
    Li, Yongguang
    BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01):
  • [39] Comparative transcriptome analysis of leaves of sour jujube seedlings under salt stress
    Lyu, Ruiheng
    Wang, Rui
    Wu, Cuiyun
    Bao, Yajing
    Guo, Peng
    ACTA PHYSIOLOGIAE PLANTARUM, 2022, 44 (11)
  • [40] Transcriptome analysis of a Triticum aestivum landrace (Roshan) in response to salt stress conditions
    Azimian, Jamshid
    Hervan, Eslam Majidi
    Azadi, Amin
    Bakhtiarizadeh, Mohammad Reza
    Azizinezhad, Reza
    PLANT GENETIC RESOURCES-CHARACTERIZATION AND UTILIZATION, 2021, 19 (03): : 261 - 274