Symmetry and monotonicity of singular solutions to p-Laplacian systems involving a first order term

被引:0
作者
Biagi, Stefano [2 ]
Esposito, Francesco [1 ]
Montoro, Luigi [3 ]
Vecchi, Eugenio [4 ]
机构
[1] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
[2] Politecn Milan, Dipartimento Matemat, Via Bonardi 9, I-20133 Milan, Italy
[3] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Cosenza, Italy
[4] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词
Singular solutions; p-Laplacian systems; moving plane method; POSITIVE SOLUTIONS; REGULARITY; THEOREMS; MAXIMUM; DECAY;
D O I
10.1515/acv-2023-0043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider positive singular solutions (i.e. with a non-removable singularity) of a system of PDEs driven by p-Laplacian operators and with the additional presence of a nonlinear first order term. By a careful use of a rather new version of the moving plane method, we prove the symmetry of the solutions. The result is already new in the scalar case.
引用
收藏
页码:1519 / 1541
页数:23
相关论文
共 29 条