ADTCD: An Adaptive Anomaly Detection Approach Toward Concept Drift in IoT

被引:11
|
作者
Xu, Lijuan [1 ]
Ding, Xiao [1 ]
Peng, Haipeng [2 ,3 ]
Zhao, Dawei [1 ]
Li, Xin [1 ]
机构
[1] Qilu Univ Technol, Shandong Comp Sci Ctr, Shandong Prov Key Lab Comp Networks, Natl Supercomp Ctr Jinan,Shandong Acad Sci, Jinan 250014, Peoples R China
[2] Beijing Univ Posts & Telecommun, Informat Secur Ctr, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[3] Beijing Univ Posts & Telecommun, Natl Engn Lab Disaster Backup & Recovery, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Anomaly detection; Data models; Adaptation models; Deep learning; Time series analysis; Mathematical models; Computational modeling; concept drift; network security; time series; ONLINE;
D O I
10.1109/JIOT.2023.3265964
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The data collected by sensors is streaming data in the Internet of Things (IoT). Although existing deep-learning-based anomaly detection methods generally perform well on static data, they struggle to respond timely to streaming data after distribution changes. However, streaming data suffers from conceptual drift due to the highly dynamic nature of IoT. In network security, concept drift-oriented anomaly detection is a crucial task, because it can adjust the model to adapt to the latest data, and detect attacks in time. Existing streaming anomaly detection methods are confronted with some challenges, including the latency of model updates, the uneven importance of new data, and the self-poisoning due to model self-updates. To tackle the above challenges, we propose a knowledge distillation-based adaptive anomaly detection model toward concept drift, ADTCD. ADTCD transfers the knowledge of the teacher model to the student model and only updates the student model to reduce the delay. We construct an algorithm of dynamically adjusting model parameters, which dynamically adjusts model weights through local inference on new samples, in order to improve the model's responsiveness to new distribution data, meanwhile solving the problem of uneven importance of new data. In addition, we adopt a one-class support vector-based outlier removal method to tackle the self-poisoning problem. In comprehensive experiments on seven high-dimensional data sets, ADTCD achieves an AUC improvement of 12.46% compared to the state-of-the-art streaming anomaly detection methods. Our future direction will focus on exploring the concept-drift problem using methods beyond autoencoders.
引用
收藏
页码:15931 / 15942
页数:12
相关论文
共 50 条
  • [41] Estimation, Forecasting, and Anomaly Detection for Nonstationary Streams Using Adaptive Estimation
    Hoeltgebaum, Henrique
    Adams, Niall
    Fernandes, Cristiano
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (08) : 7956 - 7967
  • [42] Adaptive cascade of boosted ensembles for face detection in concept drift
    Susnjak, Teo
    Barczak, Andre L. C.
    Hawick, Ken A.
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (04) : 671 - 682
  • [43] Concept drift robust adaptive novelty detection for data streams
    Cejnek, Matous
    Bukovsky, Ivo
    NEUROCOMPUTING, 2018, 309 : 46 - 53
  • [44] Adaptive cascade of boosted ensembles for face detection in concept drift
    Teo Susnjak
    Andre L. C. Barczak
    Ken A. Hawick
    Neural Computing and Applications, 2012, 21 : 671 - 682
  • [45] Drift Adaptive Online DDoS Attack Detection Framework for IoT System
    Beshah, Yonas Kibret
    Abebe, Surafel Lemma
    Melaku, Henock Mulugeta
    ELECTRONICS, 2024, 13 (06)
  • [46] Online Anomaly Detection with Concept Drift Adaptation using Recurrent Neural Networks
    Saurav, Sakti
    Malhotra, Pankaj
    Tv, Vishnu
    Gugulothu, Narendhar
    Vig, Lovekesh
    Agarwal, Puneet
    Shroff, Gautam
    PROCEEDINGS OF THE ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA (CODS-COMAD'18), 2018, : 78 - 87
  • [47] FLARE: Detection and Mitigation of Concept Drift for Federated Learning based IoT Deployments
    Chow, Theo
    Raza, Usman
    Mavromatis, Ioannis
    Khan, Aftab
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 989 - 995
  • [48] FedGroup: A Federated Learning Approach for Anomaly Detection in IoT Environments
    Zhang, Yixuan
    Suleiman, Basem
    Alibasa, Muhammad Johan
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, MOBIQUITOUS 2022, 2023, 492 : 121 - 132
  • [49] A Deep Learning Approach for Real-Time Application-Level Anomaly Detection in IoT Data Streaming
    Raeiszadeh, Mahsa
    Saleem, Ahsan
    Ebrahimzadeh, Amin
    Glitho, Roch H.
    Eker, Johan
    Mini, Raquel A. F.
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [50] DragStream: An Anomaly And Concept Drift Detector In Univariate Data Streams
    Bibinbe, Anne Marthe Sophie Ngo
    Mahamadou, Abdoul J.
    Mbouopda, Michael Franklin
    Nguifo, Engelbert Mephu
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 842 - 851