Imbalanced Data Over-Sampling Method Based on ISODATA Clustering

被引:0
|
作者
Lv, Zhenzhe [1 ]
Liu, Qicheng [1 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
imbalanced data; clustering; oversampling; ISODATA; SMOTE;
D O I
10.1587/transinf.2022EDP7190
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Class imbalance is one of the challenges faced in the field of machine learning. It is difficult for traditional classifiers to predict the minority class data. If the imbalanced data is not processed, the effect of the classifier will be greatly reduced. Aiming at the problem that the traditional classifier tends to the majority class data and ignores the minority class data, imbalanced data over-sampling method based on iterative self-organizing data analysis technique algorithm(ISODATA) clustering is proposed. The minority class is divided into different sub-clusters by ISO DATA, and each sub-cluster is over-sampled according to the sampling ratio, so that the sampled minority class data also conforms to the imbalance of the original minority class data. The new imbalanced data composed of new minority class data and majority class data is classified by SVM and Random Forest classifier. Experiments on 12 datasets from the KEEL datasets show that the method has better G-means and F-value, improving the classification accuracy. counts the of to cancer tient sifies and
引用
收藏
页码:1528 / 1536
页数:9
相关论文
共 50 条
  • [31] Applying Adaptive Over-sampling Technique Based on Data Density and Cost-Sensitive SVM to Imbalanced Learning
    Wang, Senzhang
    Li, Zhoujun
    Chao, Wenhan
    Cao, Qinghua
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [32] PDFOS: PDF estimation based over-sampling for imbalanced two-class problems
    Gao, Ming
    Hong, Xia
    Chen, Sheng
    Harris, Chris J.
    Khalaf, Emad
    NEUROCOMPUTING, 2014, 138 : 248 - 259
  • [33] AN IMBALANCED SIGNAL MODULATION CLASSIFICATION AND EVALUATION METHOD BASED ON SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE
    Liu, Xuebo
    Wang, Yiran
    Bai, Jing
    Li, Haoran
    Wang, Xu
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6224 - 6227
  • [34] Feature selection and its combination with data over-sampling for multi-class imbalanced datasets
    Tsai, Chih-Fong
    Chen, Kuan-Chen
    Lin, Wei -Chao
    APPLIED SOFT COMPUTING, 2024, 153
  • [35] The study of under- and over-sampling methods' utility in analysis of highly imbalanced data on osteoporosis
    Bach, M.
    Werner, A.
    Zywiec, J.
    Pluskiewicz, W.
    INFORMATION SCIENCES, 2017, 384 : 174 - 190
  • [36] Imbalanced data classification using improved synthetic minority over-sampling technique
    Anusha, Yamijala
    Visalakshi, R.
    Srinivas, Konda
    MULTIAGENT AND GRID SYSTEMS, 2023, 19 (02) : 117 - 131
  • [37] Adaptive over-sampling method for classification with application to imbalanced datasets in aluminum electrolysis
    Huang, Zhaoke
    Yang, Chunhua
    Chen, Xiaofang
    Huang, Keke
    Xie, Yongfang
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (11) : 7183 - 7199
  • [38] Noise Reduction A Priori Synthetic Over-Sampling for class imbalanced data sets
    Rivera, William A.
    INFORMATION SCIENCES, 2017, 408 : 146 - 161
  • [39] Adaptive over-sampling method for classification with application to imbalanced datasets in aluminum electrolysis
    Zhaoke Huang
    Chunhua Yang
    Xiaofang Chen
    Keke Huang
    Yongfang Xie
    Neural Computing and Applications, 2020, 32 : 7183 - 7199
  • [40] AMDO: An Over-Sampling Technique for Multi-Class Imbalanced Problems
    Yang, Xuebing
    Kuang, Qiuming
    Zhang, Wensheng
    Zhang, Guoping
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (09) : 1672 - 1685