Generalized Buzano inequality

被引:4
作者
Bottazzi, Tamara [1 ]
Conde, Cristian [2 ]
机构
[1] Univ Nacl Rio Negro, Ctr Interdisciplinario Telecomunicac Elect Comp &, Sede Andina 8400 S C Bariloche & Consejo Nacl Inve, RA-1425 Buenos Aires, Argentina
[2] Univ Nacl Gral Sarmiento, Los Polvorines & Consejo Nacl Invest Cientif & Tec, Inst Ciencias, JM Gutierrez 1150,1613GSX, RA-1613 Buenos Aires, Argentina
关键词
Buzano inequality; Cauchy-Schwarz inequality; Inner product space; Hilbert space; Bounded linear operator;
D O I
10.2298/FIL2327377B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If P is an orthogonal projection defined on an inner product space H, then the inequality 1 |(Px, y)| <2 [11x1111 y11 + |(x, y)|] fulfills for any x, y E H (see [10]). In particular, when P is the identity operator, then it recovers the famous Buzano inequality. We obtain generalizations of such classical inequality, which hold for certain families of bounded linear operators defined on H. In addition, several new inequalities involving the norm and numerical radius of an operator are established.
引用
收藏
页码:9377 / 9390
页数:14
相关论文
共 19 条
[1]  
BARRAA M., 2012, Functional Analysis Approximation and Computation, V41, P65
[2]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[3]   A GRUSS TYPE OPERATOR INEQUALITY [J].
Bottazzi, T. ;
Conde, C. .
ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (01) :124-132
[4]   Relative numerical ranges [J].
Bracic, Janko ;
Diogo, Cristina .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 :208-221
[5]   Hilbert space idempotents and involutions [J].
Buckholtz, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (05) :1415-1418
[6]  
Buzano M. L., 1971, Rend. Sem. Mat. Univ. e Politec. Torino, V31, P405
[7]   Product of operators and numerical range [J].
Chien, Mao-Ting ;
Gau, Hwa-Long ;
Li, Chi-Kwong ;
Tsai, Ming-Cheng ;
Wang, Kuo-Zhong .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (01) :58-67
[8]   A Buzano type inequality for two Hermitian forms and applications [J].
Dragomir, S. S. .
LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03) :514-525
[9]   BUZANO'S INEQUALITY HOLDS FOR ANY PROJECTION [J].
Dragomir, S. S. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 93 (03) :504-510
[10]  
DRAGOMIR S. S., 1985, SIMPOZIONUL MATEMATI, P13