Solving Graph Problems Using Gaussian Boson Sampling

被引:35
作者
Deng, Yu-Hao [1 ,2 ,3 ]
Gong, Si-Qiu [1 ,2 ,3 ]
Gu, Yi-Chao [1 ,2 ,3 ]
Zhang, Zhi-Jiong [1 ,2 ,3 ]
Liu, Hua-Liang [1 ,2 ,3 ]
Su, Hao [1 ,2 ,3 ]
Tang, Hao-Yang [1 ,2 ,3 ]
Xu, Jia-Min [1 ,2 ,3 ]
Jia, Meng-Hao [1 ,2 ,3 ]
Chen, Ming-Cheng [1 ,2 ,3 ]
Zhong, Han-Sen [1 ,2 ,3 ]
Wang, Hui [1 ,2 ,3 ]
Yan, Jiarong [1 ,2 ,3 ]
Hu, Yi [1 ,2 ,3 ]
Huang, Jia [4 ]
Zhang, Wei -Jun [4 ]
Li, Hao [4 ]
Jiang, Xiao [1 ,2 ,3 ]
You, Lixing [4 ]
Wang, Zhen [4 ]
Li, Li [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Lu, Chao -Yang [1 ,2 ,3 ,5 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, CAS Ctr Excellence, Synerget Innovat Ctr Quantum Informat & Quantum Ph, Shanghai 201315, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Chinese Acad Sci, Shanghai Inst Micro Syst & Informat Technol SIMIT, State Key Lab Funct Mat Informat, 865 Changning Rd, Shanghai 200050, Peoples R China
[5] New Cornerstone Sci Lab, Shenzhen 518054, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
QUANTUM COMPUTATIONAL ADVANTAGE; PERFECT MATCHINGS; INFORMATION;
D O I
10.1103/PhysRevLett.130.190601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gaussian boson sampling (GBS) is not only a feasible protocol for demonstrating quantum computa-tional advantage, but also mathematically associated with certain graph-related and quantum chemistry problems. In particular, it is proposed that the generated samples from the GBS could be harnessed to enhance the classical stochastic algorithms in searching some graph features. Here, we use Jiuzhang, a noisy intermediate-scale quantum computer, to solve graph problems. The samples are generated from a 144-mode fully connected photonic processor, with photon click up to 80 in the quantum computational advantage regime. We investigate the open question of whether the GBS enhancement over the classical stochastic algorithms persists-and how it scales-with an increasing system size on noisy quantum devices in the computationally interesting regime. We experimentally observe the presence of GBS enhancement with a large photon-click number and a robustness of the enhancement under certain noise. Our work is a step toward testing real-world problems using the existing noisy intermediate-scale quantum computers and hopes to stimulate the development of more efficient classical and quantum-inspired algorithms.
引用
收藏
页数:7
相关论文
共 51 条
[31]   Detailed study of Gaussian boson sampling [J].
Kruse, Regina ;
Hamilton, Craig S. ;
Sansoni, Linda ;
Barkhofen, Sonja ;
Silberhorn, Christine ;
Jex, Igor .
PHYSICAL REVIEW A, 2019, 100 (03)
[32]   Trawling the Web for emerging cyber-communities [J].
Kumar, R ;
Raghavan, P ;
Rajagopalan, S ;
Tomkins, A .
COMPUTER NETWORKS, 1999, 31 (11-16) :1481-1493
[33]  
Leskovec Jure, 2008, Proceeding of the 17th international conference on World Wide Web-WWW'08, page, P695
[34]   Quantum computational advantage with a programmable photonic processor [J].
Madsen, Lars S. ;
Laudenbach, Fabian ;
Askarani, Mohsen Falamarzi. ;
Rortais, Fabien ;
Vincent, Trevor ;
Bulmer, Jacob F. F. ;
Miatto, Filippo M. ;
Neuhaus, Leonhard ;
Helt, Lukas G. ;
Collins, Matthew J. ;
Lita, Adriana E. ;
Gerrits, Thomas ;
Nam, Sae Woo ;
Vaidya, Varun D. ;
Menotti, Matteo ;
Dhand, Ish ;
Vernon, Zachary ;
Quesada, Nicolas ;
Lavoie, Jonathan .
NATURE, 2022, 606 (7912) :75-+
[35]  
Moore C., 2011, The nature of computation
[36]  
Oh C, 2023, Arxiv, DOI arXiv:2302.00536
[37]   Generation and sampling of quantum states of light in a silicon chip [J].
Paesani, Stefano ;
Ding, Yunhong ;
Santagati, Raffaele ;
Chakhmakhchyan, Levon ;
Vigliar, Caterina ;
Rottwitt, Karsten ;
Oxenlowe, Leif K. ;
Wang, Jianwei ;
Thompson, Mark G. ;
Laing, Anthony .
NATURE PHYSICS, 2019, 15 (09) :925-929
[38]   Quantum Computing in the NISQ era and beyond [J].
Preskill, John .
QUANTUM, 2018, 2
[39]   Regimes of Classical Simulability for Noisy Gaussian Boson Sampling [J].
Qi, Haoyu ;
Brod, Daniel J. ;
Quesada, Nicolas ;
Garcia-Patron, Raul .
PHYSICAL REVIEW LETTERS, 2020, 124 (10)
[40]   Gaussian boson sampling using threshold detectors [J].
Quesada, Nicolas ;
Arrazola, Juan Miguel ;
Killoran, Nathan .
PHYSICAL REVIEW A, 2018, 98 (06)