High-Order Mixed Finite Element Variable Eddington Factor Methods

被引:0
|
作者
Olivier, Samuel [1 ,2 ]
Haut, Terry S. [3 ]
机构
[1] Univ Calif Berkeley, Appl Sci & Technol, Berkeley, CA USA
[2] Alamos Natl Lab, Los Alamos, NM 87544 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
Radiation transport; variable Eddington factor; Quasidiffusion; high-order finite elements; preconditioned iterative solvers; S-N EQUATIONS; DISCONTINUOUS GALERKIN; SOLVER;
D O I
10.1080/23324309.2023.2200308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply high-order mixed finite element discretization techniques and their associated preconditioned iterative solvers to the Variable Eddington Factor (VEF) equations in two spatial dimensions. The mixed finite element VEF discretizations are coupled to a high-order Discontinuous Galerkin (DG) discretization of the discrete ordinates transport equation to form effective linear transport algorithms that are compatible with high-order (curved) meshes. This combination of VEF and transport discretizations is motivated by the use of high-order mixed finite element methods in hydrodynamics calculations at the Lawrence Livermore National Laboratory (LLNL). Due to the mathematical structure of the VEF equations, the standard Raviart Thomas (RT) mixed finite elements cannot be used to approximate the vector variable in the VEF equations. Instead, we investigate three alternatives based on the use of continuous finite elements for each vector component, a non-conforming RT approach where DG-like techniques are used, and a hybridized RT method. We present numerical results that demonstrate high-order accuracy, compatibility with curved meshes, and robust and efficient convergence in iteratively solving the coupled transport-VEF system and in the preconditioned linear solvers used to invert the discretized VEF equations.
引用
收藏
页码:79 / 142
页数:64
相关论文
共 50 条
  • [31] Influence of periodically fluctuating material parameters on the stability of explicit high-order spectral element methods
    Sevilla, Ruben
    Cottereau, Regis
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 373 : 304 - 323
  • [32] Realizable high-order finite-volume schemes for quadrature-based moment methods
    Vikas, V.
    Wang, Z. J.
    Passalacqua, A.
    Fox, R. O.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (13) : 5328 - 5352
  • [33] Hypergeometric summation algorithms for high-order finite elements
    Becirovic, A.
    Paule, P.
    Pillwein, V.
    Riese, A.
    Schneider, C.
    Schoeberl, J.
    COMPUTING, 2006, 78 (03) : 235 - 249
  • [34] Weak boundary conditions for Lagrangian shock hydrodynamics: A high-order finite element implementation on curved boundaries
    Atallah, Nabil M.
    Tomov, Vladimir Z.
    Scovazzi, Guglielmo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 507
  • [35] A high-order accurate moving mesh finite element method for the radial Kohn-Sham equation
    Luo, Zheming
    Kuang, Yang
    MOLECULAR PHYSICS, 2025,
  • [36] Multi-element SIAC Filter for Shock Capturing Applied to High-Order Discontinuous Galerkin Spectral Element Methods
    Bohm, Marvin
    Schermeng, Sven
    Winters, Andrew R.
    Gassner, Gregor J.
    Jacobs, Gustaaf B.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (02) : 820 - 844
  • [37] Hypergeometric Summation Algorithms for High-order Finite Elements
    A. Bećirović
    P. Paule
    V. Pillwein
    A. Riese
    C. Schneider
    J. Schöberl
    Computing, 2006, 78 : 235 - 249
  • [38] NONCONFORMING MESH REFINEMENT FOR HIGH-ORDER FINITE ELEMENTS
    Cerveny, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04) : C367 - C392
  • [39] Multi-element SIAC Filter for Shock Capturing Applied to High-Order Discontinuous Galerkin Spectral Element Methods
    Marvin Bohm
    Sven Schermeng
    Andrew R. Winters
    Gregor J. Gassner
    Gustaaf B. Jacobs
    Journal of Scientific Computing, 2019, 81 : 820 - 844
  • [40] On continuous, discontinuous, mixed, and primal hybrid finite element methods for second-order elliptic problems
    Devloo, P. R. B.
    Faria, C. O.
    Farias, A. M.
    Gomes, S. M.
    Loula, A. F. D.
    Malta, S. M. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 115 (09) : 1083 - 1107