Function-Versatile Thermo-Optic Switch Using Silicon Nitride Waveguide in Polymer

被引:6
作者
Chen, Tao [1 ]
Ding, Zhenming [1 ]
Dang, Zhangqi [1 ]
Jiang, Xinhong [1 ]
Zhang, Ziyang [1 ]
机构
[1] Westlake Univ, Sch Engn, Lab Photon Integrat, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金;
关键词
optical switches; silicon nitride; Mach-Zehnder interferometer; multimode waveguide; thermo-optic effect; POLARIZATION BEAM SPLITTER; EXTINCTION RATIO; COUPLER;
D O I
10.3390/photonics10030277
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A function-versatile thermo-optic switch is proposed and experimentally demonstrated using silicon nitride waveguides embedded in polymer cladding. The device consists of a 1 x 2 input splitter, 2 single-mode waveguides for phase shifting, and a thermally controlled 2 x 2 output coupler to give another degree of freedom in achieving phase-matching conditions. Combining the high waveguide birefringence of the thin silicon nitride waveguide and the excellent thermo-optic property of the polymer material, this device can realize multiple functions by applying different micro-heater powers, i.e., polarization-independent path switching, beam splitting, and polarization beam splitting. For the polarization-independent path switching, the fabricated device has shown a crosstalk suppression better than 10 dB for the TE mode and over 20 dB for the TM mode in the wavelength range from 1500 nm to 1620 nm. For the polarization beam splitting function, the device can reach a polarization extinction ratio greater than 10 dB at selected bands. This simple yet scalable device may find applications in polarization-multiplexed optical communication technology and complex photonic computing networks.
引用
收藏
页数:12
相关论文
共 50 条
[21]   1.55-μm silicon-based reflection-type waveguide-integrated thermo-optic switch [J].
Cantore, F ;
Della Corte, FG .
OPTICAL ENGINEERING, 2003, 42 (10) :2835-2840
[22]   Analysis of Silicon Channel Waveguide Thermo-Optic Switches by the Image Charge Method [J].
Zhai, Daojing ;
Zhu, Rui ;
Jaluria, Yogesh ;
Jiang, Wei .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (08) :635-638
[23]   Thermo-optic devices on polymer platform [J].
Zhang, Ziyang ;
Keil, Nobert .
OPTICS COMMUNICATIONS, 2016, 362 :101-114
[24]   Low-power and high-speed thermo-optic switch using hybrid silica/polymer waveguide structure: design, fabrication and measurement [J].
Liang, Lei ;
Zheng, Chuan-Tao ;
Yan, Yun-Fei ;
Sun, Xiao-Qiang ;
Wang, Fei ;
Ma, Chun-Sheng ;
Zhang, Da-Ming .
JOURNAL OF MODERN OPTICS, 2012, 59 (12) :1084-1091
[25]   Dual-Mode 2 x 2 Thermo-Optic Switch Based on Polymer Waveguide Mach-Zehnder Interferometer [J].
Lin, Baizhu ;
Sun, Shijie ;
Sun, Xueqing ;
Lian, Tianhang ;
Zhu, Mu ;
Che, Yuanhua ;
Wang, Xibin ;
Zhang, Daming .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2022, 34 (24) :1317-1320
[26]   Polymer/Silica Hybrid Waveguide Thermo-Optic VOA Covering O-Band [J].
Yin, Yuexin ;
Yao, Mengke ;
Ding, Yingzhi ;
Xu, Xinru ;
Li, Yue ;
Wu, Yuanda ;
Zhang, Daming .
MICROMACHINES, 2022, 13 (04)
[27]   1.55 μm reflection-type optical waveguide switch based on thermo-optic effect [J].
Cantore, F ;
Della Corte, FG .
VLSI CIRCUITS AND SYSTEMS, 2003, 5117 :589-597
[28]   Thermo-optic Effects on Three Waveguide Directional Couplers [J].
Hikmatyarsyah ;
Syahriar, Ary .
SECOND INTERNATIONAL SEMINAR ON PHOTONICS, OPTICS, AND ITS APPLICATIONS (ISPHOA 2016), 2016, 10150
[29]   A novel 2 × 2 SOI thermo-optic switch [J].
Yang, Di ;
Yu, Jin-Zhong ;
Chen, Shao-Wu ;
Chen, Yuan-Yuan .
Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2007, 18 (11) :1280-1282
[30]   Thermo-optic effect exploitation in silicon microstructures [J].
Cocorullo, G ;
Della Corte, FG ;
Rendina, I ;
Sarro, PM .
SENSORS AND ACTUATORS A-PHYSICAL, 1998, 71 (1-2) :19-26