Deep learning: A primer for dentists and dental researchers

被引:41
作者
Mohammad-Rahimi, Hossein [1 ]
Rokhshad, Rata [2 ]
Bencharit, Sompop [3 ,4 ]
Krois, Joachim [1 ]
Schwendicke, Falk [1 ,5 ]
机构
[1] WHO Focus Grp AI Hlth, ITU, Top Grp Dent Diagnost & Digital Dent, Berlin, Germany
[2] Boston Univ, Med Ctr, Dept Med, Sect Endocrinol Nutr & Diabet,Vitamin D, Boston, MA USA
[3] Virginia Commonwealth Univ, Philips Inst Oral Hlth Res, Coll Engn, Sch Dent,Dept Oral & Craniofacial Mol Biol, Richmond, VA 23298 USA
[4] Virginia Commonwealth Univ, Coll Engn, Dept Biomed Engn, Richmond, VA 23298 USA
[5] Charite Univ Med Berlin, Dept Oral Diagnost Digital Hlth & Hlth Serv Res, Assmannshauser Str 4-6, D-14197 Berlin, Germany
关键词
Artificial intelligence; Deep learning; Neural networks; Dentistry; ARTIFICIAL-INTELLIGENCE; BENCHMARKING; RADIOLOGY; DATABASE; DATASET; PRIVACY;
D O I
10.1016/j.jdent.2023.104430
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objectives: Despite deep learning's wide adoption in dental artificial intelligence (AI) research, researchers from other dental fields and, more so, dental professionals may find it challenging to understand and interpret deep learning studies, their employed methods, and outcomes. The objective of this primer is to explain the basic concept of deep learning. It will lay out the commonly used terms, and describe different deep learning ap-proaches, their methods, and outcomes.Methods: Our research is based on the latest review studies, medical primers, as well as the state-of-the-art research on AI and deep learning, which have been gathered in the current study.Results: In this study, a basic understanding of deep learning models and various approaches to deep learning is presented. An overview of data management strategies for deep learning projects is presented, including data collection, data curation, data annotation, and data preprocessing. Additionally, we provided a step-by-step guide for completing a real-world project.Conclusion: Researchers and clinicians can benefit from this study by gaining insight into deep learning. It can be used to critically appraise existing work or plan new deep learning projects.Clinical significance: This study may be useful to dental researchers and professionals who are assessing and appraising deep learning studies within the field of dentistry.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Dental Caries Detection and Classification in CBCT Images Using Deep Learning
    Esmaeilyfard, Rasool
    Bonyadifard, Haniyeh
    Paknahad, Maryam
    INTERNATIONAL DENTAL JOURNAL, 2024, 74 (02) : 328 - 334
  • [32] Deep learning methods for fully automated dental age estimation on orthopantomograms
    Yuchao Shi
    Zelin Ye
    Jixiang Guo
    Yueting Tang
    Wenxuan Dong
    Jiaqi Dai
    Yu Miao
    Meng You
    Clinical Oral Investigations, 28
  • [33] Identification of dental implants using deep learning-pilot study
    Takahashi, Toshihito
    Nozaki, Kazunori
    Gonda, Tomoya
    Mameno, Tomoaki
    Wada, Masahiro
    Ikebe, Kazunori
    INTERNATIONAL JOURNAL OF IMPLANT DENTISTRY, 2020, 6 (01)
  • [34] Demystifying artificial intelligence and deep learning in dentistry
    Rodrigues, Jonas Almeida
    Krois, Joachim
    Schwendicke, Falk
    BRAZILIAN ORAL RESEARCH, 2021, 35
  • [35] Deep learning methods for protein function prediction
    Boadu, Frimpong
    Lee, Ahhyun
    Cheng, Jianlin
    PROTEOMICS, 2025, 25 (1-2)
  • [36] Classification of Dental Radiographs Using Deep Learning
    Cejudo, Jose E.
    Chaurasia, Akhilanand
    Ben Feldberg
    Krois, Joachim
    Schwendicke, Falk
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (07)
  • [37] A Comprehensive Survey for Machine Learning and Deep Learning Applications for Detecting Intrusion Detection
    Surakhi, Ola M.
    Garcia, Antonia Mora
    Jamoos, Mohammed
    Alkhanafseh, Mohammad Y.
    2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 639 - 651
  • [38] Automated estimation of chronological age from panoramic dental X-ray images using deep learning
    Milosevic, Denis
    Vodanovic, Marin
    Galic, Ivan
    Subasic, Marko
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 189
  • [39] Detecting Drift in Deep Learning: A Methodology Primer
    Piano, Luca
    Garcea, Fabio
    Gatteschi, Valentina
    Lamberti, Fabrizio
    Morra, Lia
    IT PROFESSIONAL, 2022, 24 (05) : 53 - 60
  • [40] A Survey of Deep Learning Techniques for Cybersecurity in Mobile Networks
    Rodriguez, Eva
    Otero, Beatriz
    Gutierrez, Norma
    Canal, Ramon
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (03): : 1920 - 1955