Microstructure and tribological properties of microwave-sintered Ti0.8Ni-0.3Mo/TiB composites

被引:18
作者
Balasundar, P. [1 ]
Senthil, S. [2 ]
Narayanasamy, P. [2 ]
Ramkumar, T. [3 ]
机构
[1] Kamaraj Coll Engn & Technol, Dept Mechatron Engn, Near Virudhunagar, Madurai 625701, Tamil Nadu, India
[2] Kamaraj Coll Engn & Technol, Dept Mech Engn, Near Virudhunagar, Madurai 625701, Tamil Nadu, India
[3] Dr Mahalingam Coll Engn & Technol, Dept Mech Engn, Pollachi 642003, Tamil Nadu, India
关键词
Ti-0; 8Ni-0; 3Mo; TiB; Microwave sintering; Wear; Friction; SLIDING WEAR BEHAVIOR; MECHANICAL-PROPERTIES; TITANIUM;
D O I
10.1016/j.ceramint.2022.11.085
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, the Ti-0.8Ni-0.3Mo/XTiB (X = 5, 10, 15, and 20 wt%) composites were prepared using the microwave-sintering assisted powder metallurgy technique, and tribological properties were investigated. X-ray diffraction and scanning electron microscopy (SEM), with the microscope capable of energy dispersive spec-troscopy (EDS), were used to characterize the mixed powder. The density and microhardness of the Ti-0.8Ni-0.3Mo/TiB composites were examined. The Ti-0.8Ni-0.3Mo/TiB composites exhibited a hardness of 260 HV, which is a 20% improvement over Ti-0.8Ni-0.3Mo. Tribological properties were studied by conducting experiments using a pin-on-disc wear tester at varying loads, sliding distances, and speeds. The Ti-0.8Ni-0.3Mo/ TiB composites exhibited a reduction in wear loss and coefficient of friction values owing to TiB hardness and good bonding with the matrix. The tribological properties of the Ti-0.8Ni-0.3Mo/TiB composites were enhanced by the addition of TiB particles, which resist wear and friction.
引用
收藏
页码:6055 / 6062
页数:8
相关论文
共 32 条
[1]  
Afkham Y., 2018, PARTICUL SCI TECHNOL, V36, P72, DOI [10.1080/02726351.2016.1211778, DOI 10.1080/02726351.2016.1211778]
[2]  
Amig-Borrs V., 2022, Encyclopedia of Materials: Metals and Alloys, P179
[3]   Fabrication and characterization of Ti6Al4V/TiB2-TiC composites by powder metallurgy method [J].
Anandajothi, M. ;
Ramanathan, S. ;
Ananthi, V. ;
Narayanasamy, P. .
RARE METALS, 2017, 36 (10) :806-811
[4]  
Bolzoni L., 2022, PROCES PROPERTIES EN, P353, DOI [10.1016/B978-0-12-819726-4.00081-8, DOI 10.1016/B978-0-12-819726-4.00081-8]
[5]   Comparisons of grain size-density trajectory during microwave and conventional sintering of titanium nitride [J].
Demirskyi, D. ;
Agrawal, D. ;
Ragulya, A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 581 :498-501
[6]   Effect of TiN and TiCN additions on spark plasma sintered Ti-6Al-4V [J].
Falodun, Oluwasegun E. ;
Obadele, Babatunde A. ;
Oke, Samuel R. ;
Ige, Oladeji O. ;
Olubambi, Peter A. .
PARTICULATE SCIENCE AND TECHNOLOGY, 2020, 38 (02) :156-165
[7]  
Froes FH, 2022, Encycl Mater Met Alloy, P287, DOI [10.1016/B978-0-12-819726-4.00066-1, DOI 10.1016/B978-0-12-819726-4.00066-1]
[8]   Microstructure, mechanical properties and strengthening mechanisms of in-situ prepared (Ti5Si3 + TiC0.67)/TC4 composites [J].
Huang, Xiaoyu ;
Gao, Yimin ;
Wang, Zhiping ;
Yi, Yanliang ;
Wang, Yiran .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 792 :907-917
[9]   Titanium powder metallurgy for automotive components [J].
Ivasishin, OM ;
Savvakin, DG ;
Moxson, VS ;
Bondareval, KA ;
Froes, FH .
MATERIALS TECHNOLOGY, 2002, 17 (01) :20-25
[10]  
Kondoh K., 2015, Titan. Powder Metall. Sci. Technol. Appl., P277, DOI [10.1016/B978-0-12-800054-0.00016-2, DOI 10.1016/B978-0-12-800054-0.00016-2]