Risk factors based vessel-specific prediction for stages of coronary artery disease using Bayesian quantile regression machine learning method: Results from the PARADIGM registry

被引:2
作者
Park, Hyung-Bok [1 ,2 ]
Lee, Jina [1 ,3 ]
Hong, Yongtaek [1 ]
Byungchang, So [4 ]
Kim, Wonse [4 ,5 ]
Lee, Byoung K. [6 ]
Lin, Fay Y. [7 ,8 ]
Hadamitzky, Martin [9 ]
Kim, Yong-Jin [10 ]
Conte, Edoardo [11 ]
Andreini, Daniele [11 ]
Pontone, Gianluca [11 ]
Budoff, Matthew J. [12 ]
Gottlieb, Ilan [13 ]
Chun, Eun Ju [14 ]
Cademartiri, Filippo [15 ]
Maffei, Erica [15 ]
Marques, Hugo [16 ]
Goncalves, Pedro de A. [16 ,17 ]
Leipsic, Jonathon A. [18 ]
Shin, Sanghoon [19 ]
Choi, Jung H. [20 ]
Virmani, Renu [21 ]
Samady, Habib [22 ]
Chinnaiyan, Kavitha [23 ]
Stone, Peter H. [24 ]
Berman, Daniel S. [25 ]
Narula, Jagat [26 ]
Shaw, Leslee J. [7 ]
Bax, Jeroen J. [27 ]
Min, James K. [7 ]
Kook, Woong [4 ,13 ]
Chang, Hyuk-Jae [1 ]
机构
[1] Yonsei Univ, Yonsei Univ Hlth Syst, AI Res Ctr, CONNECT,Coll Med, Seoul, South Korea
[2] Catholic Kwandong Univ, Int St Marys Hosp, Dept Cardiol, Incheon, South Korea
[3] Yonsei Univ, Brain Korea 21 PLUS Project Med Sci, Seoul, South Korea
[4] Seoul Natl Univ, Dept Math Sci, Seoul, South Korea
[5] MetaEyes, Seoul, South Korea
[6] Yonsei Univ, Gangnam Severance Hosp, Dept Cardiol, Coll Med, Seoul, South Korea
[7] New York Presbyterian Hosp, Dept Radiol, New York, NY USA
[8] Weill Cornell Med, New York, NY USA
[9] German Heart Ctr Munich, Dept Radiol & Nucl Med, Munich, Germany
[10] Yonsei Univ, Yonsei Univ Hlth Syst, Cardiovasc Ctr, Div Cardiol,Coll Med, Seoul, South Korea
[11] MetaEyes, Ctr Cardiol Monzino, Seoul, South Korea
[12] Seoul Natl Univ, Dept Math Sci, Lundquist Inst, Seoul, South Korea
[13] Seoul Natl Univ, Dept Math Sci, Gwanak Ro 1, Rio De Janeiro, South Korea
[14] Seoul Natl Univ, Bundang Hosp, Sungnam, South Korea
[15] Fdn Monasterio CNR, Dept Radiol, Pisa, Italy
[16] Hosp Luz, Catol Med Sch, Unit Cardiovasc Imaging, Lisbon, Portugal
[17] Nova Med Sch, Lisbon, Portugal
[18] Univ British Columbia, Dept Med & Radiol, Vancouver, BC, Canada
[19] Ewha Womans Univ, Dept Cardiol, Seoul Hosp, Seoul, South Korea
[20] Pusan Univ Hosp, Dept Cardiol, Pusan, South Korea
[21] CVPath Inst, Dept Pathol, Gaithersburg, MD USA
[22] Georgia Heart Inst, Dept Cardiol, Northeast Georgia Hlth Syst, Gainesville, GA USA
[23] William Beaumont Hosp, Dept Cardiol, Royal Oak, MI USA
[24] Harvard Med Sch, Brigham & Womens Hosp, Dept Cardiovasc Med, Boston, MA USA
[25] Cedars Sinai Med Ctr, Dept Imaging & Med, Los Angeles, CA USA
[26] Marie Josee & Henry R Kravis Ctr Cardiovasc Hlth, Zena & Michael A Wiener Cardiovasc Inst, Icahn Sch Med Mt Sinai, Mt Sinai Heart, New York, NY USA
[27] Leiden Univ, Dept Cardiol, Med Ctr, Leiden, Netherlands
基金
新加坡国家研究基金会;
关键词
cardiovascular risk factors; coronary artery disease; machine learning; CHEST-PAIN; HEART-DISEASE; DIAGNOSIS; ANGIOGRAPHY; PREVALENCE; MODELS; CARE;
D O I
10.1002/clc.23964
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and HypothesisThe recently introduced Bayesian quantile regression (BQR) machine-learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coronary artery disease (CAD) using the BQR model in a vessel-specific manner. MethodsFrom the data of 1,463 patients obtained from the PARADIGM (NCT02803411) registry, we analyzed the lumen diameter stenosis (DS) of the three vessels: left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). Two models for predicting DS and DS changes were developed. Baseline CV risk factors, symptoms, and laboratory test results were used as the inputs. The conditional 10%, 25%, 50%, 75%, and 90% quantile functions of the maximum DS and DS change of the three vessels were estimated using the BQR model. ResultsThe 90th percentiles of the DS of the three vessels and their maximum DS change were 41%-50% and 5.6%-7.3%, respectively. Typical anginal symptoms were associated with the highest quantile (90%) of DS in the LAD; diabetes with higher quantiles (75% and 90%) of DS in the LCx; dyslipidemia with the highest quantile (90%) of DS in the RCA; and shortness of breath showed some association with the LCx and RCA. Interestingly, High-density lipoprotein cholesterol showed a dynamic association along DS change in the per-patient analysis. ConclusionsThis study demonstrates the clinical utility of the BQR model for evaluating the comprehensive relationship between risk factors and baseline-grade CAD and its progression.
引用
收藏
页码:320 / 327
页数:8
相关论文
共 29 条
  • [1] QUANTILE REGRESSION-OPPORTUNITIES AND CHALLENGES FROM A USER'S PERSPECTIVE
    Beyerlein, Andreas
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2014, 180 (03) : 330 - 331
  • [2] QUANTILE REGRESSION, BOX-COX TRANSFORMATION MODEL, AND THE US WAGE STRUCTURE, 1963-1987
    BUCHINSKY, M
    [J]. JOURNAL OF ECONOMETRICS, 1995, 65 (01) : 109 - 154
  • [3] ANALYSIS OF PROBABILITY AS AN AID IN THE CLINICAL-DIAGNOSIS OF CORONARY-ARTERY DISEASE
    DIAMOND, GA
    FORRESTER, JS
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1979, 300 (24) : 1350 - 1358
  • [4] Frumento, 2016, CTQR CENSORED TRUNCA
  • [5] The External Validity of Prediction Models for the Diagnosis of Obstructive Coronary Artery Disease in Patients With Stable Chest Pain Insights From the PROMISE Trial
    Genders, Tessa S. S.
    Coles, Adrian
    Hoffmann, Udo
    Patel, Manesh R.
    Mark, Daniel B.
    Lee, Kerry L.
    Steyerberg, Ewout W.
    Hunink, M. G. Myriam
    Douglas, Pamela S.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2018, 11 (03) : 437 - 446
  • [6] A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension
    Genders, Tessa S. S.
    Steyerberg, Ewout W.
    Alkadhi, Hatem
    Leschka, Sebastian
    Desbiolles, Lotus
    Nieman, Koen
    Galema, Tjebbe W.
    Meijboom, W. Bob
    Mollet, Nico R.
    de Feyter, Pim J.
    Cademartiri, Filippo
    Maffei, Erica
    Dewey, Marc
    Zimmermann, Elke
    Laule, Michael
    Pugliese, Francesca
    Barbagallo, Rossella
    Sinitsyn, Valentin
    Bogaert, Jan
    Goetschalckx, Kaatje
    Schoepf, U. Joseph
    Rowe, Garrett W.
    Schuijf, Joanne D.
    Bax, Jeroen J.
    de Graaf, Fleur R.
    Knuuti, Juhani
    Kajander, Sami
    van Mieghem, Carlos A. G.
    Meijs, Matthijs F. L.
    Cramer, Maarten J.
    Gopalan, Deepa
    Feuchtner, Gudrun
    Friedrich, Guy
    Krestin, Gabriel P.
    Hunink, M. G. Myriam
    [J]. EUROPEAN HEART JOURNAL, 2011, 32 (11) : 1316 - 1330
  • [7] Major risk factors as antecedents of fatal and nonfatal coronary heart disease events
    Greenland, P
    Knoll, MD
    Stamler, J
    Neaton, JD
    Dyer, AR
    Garside, DB
    Wilson, PW
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2003, 290 (07): : 891 - 897
  • [8] Kamel PI., 2021, RADIOL CARDIOTHORAC, V3
  • [9] Prevalence of conventional risk factors in. patients with coronary heart disease
    Khot, UN
    Khot, MB
    Bajzer, CT
    Sapp, SK
    Ohman, EM
    Brener, SJ
    Ellis, SG
    Lincoff, AM
    Topol, EJ
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2003, 290 (07): : 898 - 904
  • [10] Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression
    Kim, Mo Se
    Lee, Byung Sung
    Lee, Hye Seon
    Lee, Seung Ho
    Lee, Junseok
    Kim, Wonse
    [J]. APPLIED ENERGY, 2020, 278