Continuously tunable topological defects and topological edge states in dielectric photonic crystals

被引:13
作者
Tang, Shiwei [1 ]
Xu, Yikai [1 ]
Ding, Fei [2 ]
Liu, Feng [1 ,3 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
[2] Univ Southern Denmark, SDU Nano Opt, Campusvej 55, DK-5230 Odense, Denmark
[3] Ningbo Univ, Inst High Pressure Phys, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
CATALOG;
D O I
10.1103/PhysRevB.107.L041403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Topological defects in solid-state materials are crystallographic imperfections that local perturbations cannot remove. Owing to their nontrivial real-space topology, topological defects such as dislocations and disclinations could trap anomalous states associated with nontrivial momentum-space topology. The real-space topology of dislocations and disclinations can be characterized by the Burgers vector B, which is usually a fixed fraction and integer of the lattice constant in solid-state materials. Here we show that in a dielectric photonic crystal-an artificial crystalline structure-it is possible to tune B continuously as a function of the dielectric constant of dislocations. Through this unprecedented tunability of B, we achieve proper controls of topological interfacial states, i.e., reversal of their helicities. Based on this fact, we propose a topological optical switch controlled by the dielectric constant of the tunable dislocation. Our results shed light on the interplay of real and reciprocal space topologies and offer a scheme to implement scalable and tunable robust topological waveguides in dielectric photonic crystals.
引用
收藏
页数:7
相关论文
共 74 条
  • [1] aps, SUPPLEMENTAL MAT, DOI [10.1103/PhysRevB.107.L041403, DOI 10.1103/PHYSREVB.107.L041403]
  • [2] Manipulation of edge states in microwave artificial graphene
    Bellec, Matthieu
    Kuhl, Ulrich
    Montambaux, Gilles
    Mortessagne, Fabrice
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [3] Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators
    Benalcazar, Wladimir A.
    Li, Tianhe
    Hughes, Taylor L.
    [J]. PHYSICAL REVIEW B, 2019, 99 (24)
  • [4] Engineering fragile topology in photonic crystals: Topological quantum chemistry of light
    Blanco de Paz, Maria
    Vergniory, Maia G.
    Bercioux, Dario
    Garcia-Etxarri, Aitzol
    Bradlyn, Barry
    [J]. PHYSICAL REVIEW RESEARCH, 2019, 1 (03):
  • [5] Quantum spin Hall effect of light
    Bliokh, Konstantin Y.
    Smirnova, Daria
    Nori, Franco
    [J]. SCIENCE, 2015, 348 (6242) : 1448 - 1451
  • [6] Disconnected elementary band representations, fragile topology, and Wilson loops as topological indices: An example on the triangular lattice
    Bradlyn, Barry
    Wang, Zhijun
    Cano, Jennifer
    Bernevig, B. Andrei
    [J]. PHYSICAL REVIEW B, 2019, 99 (04)
  • [7] Pseudospin-Polarized Topological Line Defects in Dielectric Photonic Crystals
    Chen, Menglin L. N.
    Jiang, Li Jun
    Lan, Zhihao
    Sha, Wei E. I.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (01) : 609 - 613
  • [8] Photonic Topological Valley-Locked Waveguides
    Chen, Qiaolu
    Zhang, Li
    Chen, Fujia
    Yan, Qinghui
    Xi, Rui
    Chen, Hongsheng
    Yang, Yihao
    [J]. ACS PHOTONICS, 2021, 8 (05): : 1400 - 1406
  • [9] A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3
    Delaney, Matthew
    Zeimpekis, Ioannis
    Lawson, Daniel
    Hewak, Daniel W.
    Muskens, Otto L.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (36)
  • [10] Observation of valley-dependent beams in photonic graphene
    Deng, Fusheng
    Sun, Yong
    Wang, Xiao
    Xue, Rui
    Li, Yuan
    Jiang, Haitao
    Shi, Yunlong
    Chang, Kai
    Chen, Hong
    [J]. OPTICS EXPRESS, 2014, 22 (19): : 23605 - 23613