Exact solutions of the Dirac oscillator under the influence of the Aharonov-Casher effect in the cosmic string background

被引:1
作者
Oliveira, R. R. S. [1 ]
Maluf, R. V. [1 ]
Almeida, C. A. S. [1 ]
机构
[1] Univ Fed Ceara UFC, Dept Fis, Campus Pici 6030, BR-60455760 Fortaleza, CE, Brazil
关键词
Dirac oscillator; Aharonov-Casher effect; External electromagnetic field; Minkowski spacetime; Cosmic string spacetime; RELATIVISTIC QUANTUM DYNAMICS; PARTICLE; SPIN; INTERFEROMETRY; ELECTRON; STATES; PHASE; BOHM;
D O I
10.1007/s12648-024-03079-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the influence of the Aharonov-Casher effect and of an external electromagnetic field on the relativistic and nonrelativistic energy spectra of the (3+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3+1)$$\end{document}-dimensional Dirac oscillator (DO) with magnetic dipole moment in two different scenarios: the Minkowski spacetime (flat case) and the cosmic string spacetime (curved case). Solving the DO, we first determine the flat relativistic spectrum, where we verified that such a spectrum depends explicitly on the magnetic energy Em\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_m$$\end{document}, quantum numbers n and l, quantum phase phi AC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi _\textrm{AC}$$\end{document}, and of an effective frequency omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document}, on which it depends on the frequency of the DO, given by omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega$$\end{document}, and of a type of cyclotron frequency, given by omega AC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\textrm{AC}$$\end{document}. So, due to the presence of the quantum phase, we note that the spectrum is a periodic function with periodicity +/- 2 pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 2 \pi$$\end{document}. Besides, the function of Em\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_m$$\end{document} is to decrease or increase the energies depending on the choice of spin, while the function of omega AC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\textrm{AC}$$\end{document} is to increase the energies of the particle and decrease those of the antiparticle. Solving the DO again, but now in the cosmic string spacetime, we determine the curved relativistic spectrum, where some terms have been modified due to the deficit angle eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} (curvature or topological parameter) of the cosmic string. We note that this deficit angle has the function of breaking the degeneracy of energy levels as well as increasing the values of such levels. Finally, we also analyzed the nonrelativistic limit of our results, and comparing our problem with other works, we verified that our results generalize some particular cases in the literature.
引用
收藏
页码:3299 / 3307
页数:9
相关论文
共 57 条
  • [1] TOPOLOGICAL QUANTUM EFFECTS FOR NEUTRAL PARTICLES
    AHARONOV, Y
    CASHER, A
    [J]. PHYSICAL REVIEW LETTERS, 1984, 53 (04) : 319 - 321
  • [2] Effects of spin on the dynamics of the 2D Dirac oscillator in the magnetic cosmic string background
    Andrade, Fabiano M.
    Silva, Edilberto O.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2014, 74 (12): : 1 - 8
  • [3] Remarks on the Dirac oscillator in (2+1) dimensions
    Andrade, Fabiano M.
    Silva, Edilberto O.
    [J]. EPL, 2014, 108 (03)
  • [4] Relativistic quantum dynamics of a neutral particle in external electric fields: An approach on effects of spin
    Azevedo, F. S.
    Silva, Edilberto O.
    Castro, Luis B.
    Filgueiras, Cleverson
    Cogollo, D.
    [J]. ANNALS OF PHYSICS, 2015, 362 : 196 - 207
  • [5] On the interaction of the Dirac oscillator with the Aharonov-Casher system in topological defect backgrounds
    Bakke, K.
    Furtado, C.
    [J]. ANNALS OF PHYSICS, 2013, 336 : 489 - 504
  • [6] Relativistic Landau quantization for a neutral particle
    Bakke, K.
    Furtado, C.
    [J]. PHYSICAL REVIEW A, 2009, 80 (03):
  • [7] Landau quantization for a neutral particle in the presence of topological defects
    Bakke, K.
    Ribeiro, L. R.
    Furtado, C.
    Nascimento, J. R.
    [J]. PHYSICAL REVIEW D, 2009, 79 (02):
  • [8] Single-particle quantum states in a crystal with topological defects
    Bausch, R
    Schmitz, R
    Turski, LA
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (11) : 2257 - 2260
  • [9] Chirality quantum phase transition in the Dirac oscillator
    Bermudez, A.
    Martin-Delgado, M. A.
    Luis, A.
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [10] Dirac equation for cold atoms in artificial curved spacetimes
    Boada, O.
    Celi, A.
    Latorre, J. I.
    Lewenstein, M.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13