Simulating Polaritonic Ground States on Noisy Quantum Devices

被引:0
作者
Hassan, Mohammad [1 ,2 ]
Pavosevic, Fabijan [3 ]
Wang, Derek S. [5 ]
Flick, Johannes [1 ,2 ,4 ]
机构
[1] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[2] CUNY, Grad Ctr, Dept Phys, New York, NY 10016 USA
[3] Algorithmiq Ltd, FI-00160 Helsinki, Finland
[4] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[5] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
CHEMICAL-REACTIVITY; COUPLED-CLUSTER; CHEMISTRY; EIGENSOLVER; MOLECULES;
D O I
10.1021/acs.jpclett.3c02875
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The recent advent of quantum algorithms for noisy quantum devices offers a new route toward simulating strong light-matter interactions of molecules in optical cavities for polaritonic chemistry. In this work, we introduce a general framework for simulating electron-photon-coupled systems on small, noisy quantum devices. This method is based on the variational quantum eigensolver (VQE) with the polaritonic unitary coupled cluster (PUCC) ansatz. To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods, such as electron-photon parity, and use recently developed error mitigation schemes, such as the reference zero-noise extrapolation method. We explore the robustness of the VQE-PUCC approach across a diverse set of regimes for the bond length, cavity frequency, and coupling strength of the H2 molecule in an optical cavity. To quantify the performance, we measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number, an experimentally accessible general indicator of electron-photon correlation.
引用
收藏
页码:1373 / 1381
页数:9
相关论文
共 68 条
  • [1] Modification of ground-state chemical reactivity via light-matter coherence in infrared cavities
    Ahn, Wonmi
    Triana, Johan F.
    Recabal, Felipe
    Herrera, Felipe
    Simpkins, Blake S.
    [J]. SCIENCE, 2023, 380 (6650) : 1165 - 1168
  • [2] [Anonymous], 2023, Qiskit contributors, Qiskit: An Opensource Framework for Quantum Computing
  • [3] Simulated quantum computation of molecular energies
    Aspuru-Guzik, A
    Dutoi, AD
    Love, PJ
    Head-Gordon, M
    [J]. SCIENCE, 2005, 309 (5741) : 1704 - 1707
  • [4] Quantum Algorithms for Quantum Chemistry and Quantum Materials Science
    Bauer, Bela
    Bravyi, Sergey
    Motta, Mario
    Chan, Garnet Kin-Lic
    [J]. CHEMICAL REVIEWS, 2020, 120 (22) : 12685 - 12717
  • [5] Picocavities: a Primer
    Baumberg, Jeremy J.
    [J]. NANO LETTERS, 2022, 22 (14) : 5859 - 5865
  • [6] Single-molecule optomechanics in "picocavities"
    Benz, Felix
    Schmidt, Mikolaj K.
    Dreismann, Alexander
    Chikkaraddy, Rohit
    Zhang, Yao
    Demetriadou, Angela
    Carnegie, Cloudy
    Ohadi, Hamid
    de Nijs, Bart
    Esteban, Ruben
    Aizpurua, Javier
    Baumberg, Jeremy J.
    [J]. SCIENCE, 2016, 354 (6313) : 726 - 729
  • [7] Bravyi S., 2017, ARXIV
  • [8] Fermionic quantum computation
    Bravyi, SB
    Kitaev, AY
    [J]. ANNALS OF PHYSICS, 2002, 298 (01) : 210 - 226
  • [9] Polaritonic normal modes in transition state theory
    Campos-Gonzalez-Angulo, Jorge A.
    Yuen-Zhou, Joel
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (16)
  • [10] Quantum Chemistry in the Age of Quantum Computing
    Cao, Yudong
    Romero, Jonathan
    Olson, Jonathan P.
    Degroote, Matthias
    Johnson, Peter D.
    Kieferova, Maria
    Kivlichan, Ian D.
    Menke, Tim
    Peropadre, Borja
    Sawaya, Nicolas P. D.
    Sim, Sukin
    Veis, Libor
    Aspuru-Guzik, Alan
    [J]. CHEMICAL REVIEWS, 2019, 119 (19) : 10856 - 10915