PT-symmetry rules applied to a class of real potentials

被引:1
作者
Garidi, S. [1 ,2 ]
Lombard, R. J. [3 ]
Mezhoud, R. [1 ,4 ]
机构
[1] Univ MHamed Bougara Boumerdes, Fac Sci, Dept Phys, Route Gare Ferroviaire, Boumerdes 35000, Algeria
[2] Lab Phys Particules & Phys Stat LPPPS ENS KOUBA, Kouba, Algeria
[3] IJClab Orsay, F-91406 Orsay, France
[4] Univ MHamed Bougara Boumerdes, Lab Revetement Mat & Environm LRME, Bloc Rech,Campus Nord, Boumerdes 35000, Algeria
关键词
quantum mechanics; complex wave functions; asymptotically negative potentials; ENERGY GROUND-STATES; LOCALIZED STRUCTURES; INVERSE PROBLEM; BOUND-STATES; WAVE-GUIDES; MEDIA;
D O I
10.1088/1402-4896/ad2658
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Extending the functional space to complex eigenfunctions R J Lombard et al (2022, Rom. J. Phys. 67, 104), we have shown that infinitely negative potentials at large distances admit finite energy states. The used techniques are similar to the ones applied in the case of PT symmetric complex potentials with real eigenvalues. We present the lowest part of the spectra for - divide x divide n potentials with 4 <= n <= 8. We also discuss the norm and orthogonality of the wave functions.
引用
收藏
页数:10
相关论文
共 21 条
[1]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[2]  
Bender C.M., 2019, PT Symmetry: In Quantum and Classical Physics, DOI DOI 10.1142/Q0178
[3]   Making sense of non-Hermitian Hamiltonians [J].
Bender, Carl M. .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) :947-1018
[4]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[5]   CURVATURE-INDUCED BOUND-STATES IN QUANTUM WAVE-GUIDES IN 2-DIMENSIONS AND 3-DIMENSIONS [J].
DUCLOS, P ;
EXNER, P .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (01) :73-102
[6]   CHARMONIUM - MODEL [J].
EICHTEN, E ;
GOTTFRIED, K ;
KINOSHITA, T ;
LANE, KD ;
YAN, TM .
PHYSICAL REVIEW D, 1978, 17 (11) :3090-3717
[7]  
Exner P, 2015, THEOR MATH PHYS SER, P1, DOI 10.1007/978-3-319-18576-7
[8]  
Garidi S, 2023, ROM J PHYS, V68
[9]   Physical realization of the Glauber quantum oscillator [J].
Gentilini, Silvia ;
Braidotti, Maria Chiara ;
Marcucci, Giulia ;
DelRe, Eugenio ;
Conti, Claudio .
SCIENTIFIC REPORTS, 2015, 5
[10]  
Glauber R. J., 1986, Ann. New York Acad. Sci., V480, P336