Open writer identification from handwritten text fragments using lite convolutional neural network

被引:0
|
作者
Briber, Amina [1 ]
Chibani, Youcef [1 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Elect Engn, Lab Ingn Syst Intelligents & Communicants LISIC, 32 El Alia, Algiers 16111, Algeria
关键词
Open system; Writer identification; Handwritten; Text fragment; CNN; Distance-based classifier; DEEP; FEATURES; RETRIEVAL;
D O I
10.1007/s10032-023-00458-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Usually, a writer identification system based on the convolutional neural network (CNN) is designed as a closed system, which is composed of many convolutional layers trained often on the entire document for achieving a high performance but requiring a high computation cost. This paper proposes an open writer identification system using a lite CNN composed of only four convolutional layers for extracting features from text fragments. The CNN is trained on a small subset of writers, and then, the resulting model is used for feature generation for new writers, without retraining, associated with the distance-based classifier. The proposed system is simple and easy to deploy for adding new writers without retraining. Extensive experiments performed on text fragments produced from the standard IFN/ENIT and IAM datasets show an encouraging performance against the state of the art of closed systems with an identification rate of 97.08% and 91.00%, respectively, despite few fragments used for writer identification.
引用
收藏
页码:529 / 551
页数:23
相关论文
共 50 条
  • [31] Automatic writer identification framework for online handwritten documents using character prototypes
    Tan, Guo Xian
    Viard-Gaudin, Christian
    Kot, Alex C.
    PATTERN RECOGNITION, 2009, 42 (12) : 3313 - 3323
  • [32] Bangla Handwritten Character Recognition With Multilayer Convolutional Neural Network
    Abir, B. M.
    Mahal, Somania Nur
    Islam, Md Saiful
    Chakrabarty, Amitabha
    ADVANCES IN DATA AND INFORMATION SCIENCES, ICDIS 2017, VOL 2, 2019, 39 : 155 - 165
  • [33] Optimized Convolutional Neural Network for Tamil Handwritten Character Recognition
    Lincy, R. Babitha
    Gayathri, R.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (11)
  • [34] Recognition of Handwritten Arabic and Hindi Numerals Using Convolutional Neural Networks
    Alqudah, Amin
    Alqudah, Ali Mohammad
    Alquran, Hiam
    Al-Zoubi, Hussein R.
    Al-Qodah, Mohammed
    Al-Khassaweneh, Mahmood A.
    APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 30
  • [35] Convolutional Neural Network Based Text Steganalysis
    Wen, Juan
    Zhou, Xuejing
    Zhong, Ping
    Xue, Yiming
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (03) : 460 - 464
  • [36] Bangla Handwritten Character and Digit Recognition Using Deep Convolutional Neural Network on Augmented Dataset and Its Applications
    Huda, Hasibul
    Fahad, Md Ariful Islam
    Islam, Moonmoon
    Das, Amit Kumar
    PROCEEDINGS OF THE 2022 16TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2022), 2022,
  • [37] Automatic removal of crossed-out handwritten text and the effect on writer verification and identification
    Brink, Axel
    van der Klauw, Harro
    Schomaker, Lambert
    DOCUMENT RECOGNITION AND RETRIEVAL XV, 2008, 6815
  • [38] An optimum end-to-end text-independent speaker identification system using convolutional neural network
    Farsiani, Shabnam
    Izadkhah, Habib
    Lotfi, Shahriar
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [39] Identification of Epileptic Seizures using Autoencoders and Convolutional Neural Network
    Divya, P.
    Devi, B. Aruna
    Prabakar, Srinivasan
    Porkumaran, Karantharaj
    Kannan, Ramani
    Nor, Nursyarizal Bin Mohd
    Elamvazuthi, Irraivan
    2020 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS), 2021,
  • [40] Leaf Based Trees Identification Using Convolutional Neural Network
    Zarrin, Iffat
    Islam, Saiful
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,