In an era defined by energy security, healthcare advancements, and the pursuit of clean energy solutions, nuclear energy emerges as a potent candidate. However, a major bottleneck in its growth is the hindrance posed by the extrapolation of risk due to high-dose radiation to the low-dose region (< 100 mSv), according to the linear no-threshold (LNT) model. This creates undue radiophobia among the members of public leading to resistance against the applications of radiation for societal uses. This perspective article proposes a quantum approach to augment a hormesis or threshold model as an alternative to the LNT model while also discussing the LNT's fallacies. To provide a more fundamental explanation to the several nonlinear biological processes underpinning such alternative models, this article suggests a quantum biology approach. Drawing inspiration from celebrated quantum biology examples across photosynthesis, magnetoreception and olfaction, this article discusses ways in which nontrivial quantum phenomena can explain nonlinear low doses processes such as upregulation of reactive oxygen species, DNA repair mechanisms, and other adaptive responses. By presenting quantum biology as a fundamental basis for nonlinearity, this article tries to underscore the potential of scientifically driven hormesis/threshold model to challenge the LNT model and maximize the numerous peaceful societal applications of nuclear energy.