Domain generalization via Inter-domain Alignment and Intra-domain Expansion

被引:8
|
作者
Hu, Jiajun [1 ,2 ]
Qi, Lei [3 ]
Zhang, Jian [1 ,2 ]
Shi, Yinghuan [1 ,2 ,4 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] Nanjing Univ, Natl Inst Healthcare Data Sci, Nanjing, Peoples R China
[3] Southeast Univ, Key Lab New Generat Artificial Intelligence Techno, Minist Educ, Nanjing, Peoples R China
[4] Nanjing Univ, Natl Key Lab Novel Software Technol, 163 Xianlin Rd, Nanjing 210023, Jiangsu, Peoples R China
关键词
Domain generalization; Contrastive learning; Image recognition;
D O I
10.1016/j.patcog.2023.110029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The performance of traditional deep learning models tends to drop dramatically during being deployed in real-world scenarios when the distribution shift between the seen training and unseen test data occurs. Domain Generalization methods are designed to achieve generalizability to deal with the above issue. Since the features extracted by softmax cross-entropy loss are not adequately domain-invariant, previous works in Domain Generalization have attempted to overcome this problem by employing contrastive-based losses which pull positive pairs (i.e., samples with the same class label) from different domains closer. Unfortunately, these approaches tend to produce an extremely small feature space, which is not robust facing unseen domain and easily overfits to source domains. To address the aforementioned issue, we propose a novel loss named IAIE Loss to simultaneously perform Inter-domain Alignment and Intra-domain Expansion for positive pairs, which facilitates the model to extract domain-invariant features and mitigates overfitting. Specifically, we design two sets of positive samples named "easy positive samples"and "hard positive samples". IAIE Loss pulls the hard positive pairs closer (alignment) while pushing the easy positive pairs apart (expansion). The state-of-the-art results on multiple DG benchmark datasets verify the effectiveness of our method.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Domain Attention Model for Domain Generalization in Object Detection
    He, Weixiong
    Zheng, Huicheng
    Lai, Jianhuang
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 27 - 39
  • [32] Cross-Domain Gated Learning for Domain Generalization
    Du, Dapeng
    Chen, Jiawei
    Li, Yuexiang
    Ma, Kai
    Wu, Gangshan
    Zheng, Yefeng
    Wang, Limin
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2842 - 2857
  • [33] Respecting Domain Relations: Hypothesis Invariance for Domain Generalization
    Wang, Ziqi
    Loog, Marco
    van Gemert, Jan
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 9756 - 9763
  • [34] Cross-domain Ensemble Distillation for Domain Generalization
    Lee, Kyungmoon
    Kim, Sungyeon
    Kwak, Suha
    COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 : 1 - 20
  • [35] Label-Efficient Domain Generalization via Collaborative Exploration and Generalization
    Yuan, Junkun
    Ma, Xu
    Chen, Defang
    Kuang, Kun
    Wu, Fei
    Lin, Lanfen
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 2361 - 2370
  • [36] Style Augmentation and Domain-Aware Parametric Contrastive Learning for Domain Generalization
    Li, Mingkang
    Zhang, Jiali
    Zhang, Wen
    Gong, Lu
    Zhang, Zili
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 211 - 224
  • [37] Achieving domain generalization for underwater object detection by domain mixup and contrastive learning
    Chen, Yang
    Song, Pinhao
    Liu, Hong
    Dai, Linhui
    Zhang, Xiaochuan
    Ding, Runwei
    Li, Shengquan
    NEUROCOMPUTING, 2023, 528 : 20 - 34
  • [38] Domain Generalization via Adversarially Learned Novel Domains
    Zhe, Yu
    Fukuchi, Kazuto
    Akimoto, Youhei
    Sakuma, Jun
    IEEE ACCESS, 2022, 10 : 101855 - 101868
  • [39] Domain Generalization for Time-Series Forecasting via Extended Domain-Invariant Representations
    Shi, Yunchuan
    Li, Wei
    Zomaya, Albert Y.
    2024 IEEE ANNUAL CONGRESS ON ARTIFICIAL INTELLIGENCE OF THING, AIOT 2024, 2024, : 110 - 116
  • [40] Adaptive Domain Generalization Via Online Disagreement Minimization
    Zhang, Xin
    Chen, Ying-Cong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4247 - 4258