Neural-physics multi-fidelity model with active learning and uncertainty quantification for GPU-enabled microfluidic concentration gradient generator design

被引:7
作者
Yang, Haizhou [1 ,2 ]
Ou, Junlin [1 ]
Wang, Yi [1 ]
机构
[1] Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
关键词
Neural network; Multi-fidelity; Active learning; Uncertainty quantification; GPU computing; Microfluidic concentration gradient generator; OPTIMIZATION; REGRESSION; SUPPORT; CELLS;
D O I
10.1016/j.cma.2023.116434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microfluidic concentration gradient generator (mu CGG) is an important biomedical device to generate concentration gradients (CGs) of biomolecules at the microscale. Nonetheless, determining their operational parameter values to generate complex, user-specific, biologically desired CGs is not trivial. This paper presents a neural-physics multi-fidelity model (NPMFM) to predict CGs with equivalent accuracy as high-fidelity CFD simulation at ultra-fast computational speed through a novel uncertainty-and distance-based active learning process. The verified NP-MFM, along with the genetic algorithm, is implemented on a GPU platform to search optimal values of operational parameters that generate CGs closely matching user-prescribed profiles. Results show that the NP-MFM is a feasible multi-fidelity modeling approach for rapid and accurate prediction of CGs (with 0.019s/simulation) and can be used for GPU-enabled mu CGG design optimization and automation. Furthermore, design CGs generated by the proposed method match user-prescribed CGs very well with an averaged discrepancy less than 0.34.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 57 条
[1]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[2]   Active learning Bayesian support vector regression model for global approximation [J].
Cheng, Kai ;
Lu, Zhenzhou .
INFORMATION SCIENCES, 2021, 544 :549-563
[3]   Automatic Design of Microfluidic Gradient Generators [J].
Fink, Gerold ;
Mitteramskogler, Tina ;
Hintermueller, Marcus A. ;
Jakoby, Bernhard ;
Wille, Robert .
IEEE ACCESS, 2022, 10 :28155-28164
[4]   Design of novel microfluidic concentration gradient generators suitable for linear and exponential concentration ranges [J].
Friedrich, Daniel ;
Please, Colin P. ;
Melvin, Tracy .
CHEMICAL ENGINEERING JOURNAL, 2012, 193 :296-303
[5]  
Gal Y, 2016, PR MACH LEARN RES, V48
[6]  
Ganaie MA, 2022, Arxiv, DOI [arXiv:2104.02395, 10.48550/arXiv.2104.02395]
[7]  
Fernandez-Godino MG, 2017, Arxiv, DOI [arXiv:1609.07196, DOI 10.48550/ARXIV.1609.07196]
[8]  
Hong S.H., 2022, Eng. Comput., P1
[9]   Inverse design of microfluidic concentration gradient generator using deep learning and physics-based component model [J].
Hong, Seong Hyeon ;
Yang, Haizhou ;
Wang, Yi .
MICROFLUIDICS AND NANOFLUIDICS, 2020, 24 (06)
[10]   Concentration Gradients in Material Sciences: Methods to Design and Biomedical Applications [J].
Hua, Dawei ;
Xiong, Ranhua ;
Braeckmans, Kevin ;
Scheid, Benoit ;
Huang, Chaobo ;
Sauvage, Felix ;
De Smedt, Stefaan C. .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (15)