Wavelet U-Net plus plus for accurate lung nodule segmentation in CT scans: Improving early detection and diagnosis of lung cancer

被引:12
作者
Agnes, S. Akila [1 ]
Solomon, A. Arun [2 ]
Karthick, K. [3 ]
机构
[1] GMR Inst Technol, Dept Comp Sci & Engn, Rajam, Andhra Pradesh, India
[2] GMR Inst Technol, Dept Civil Engn, Rajam, Andhra Pradesh, India
[3] GMR Inst Technol, Dept Elect & Elect Engn, Rajam, Andhra Pradesh, India
基金
美国国家卫生研究院;
关键词
Lung cancer; Lung nodule segmentation; Wavelet U-Net; Haar wavelet pooling; Deep learning; Medical imaging; IMAGE DATABASE CONSORTIUM; PULMONARY NODULES;
D O I
10.1016/j.bspc.2023.105509
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Lung cancer is one of the leading causes of cancer-related deaths globally, and accurate segmentation of lung nodules is critical for its early detection and diagnosis. However, small nodules often have low contrast and are challenging to distinguish from noise and other structures in medical images, making accurate segmentation difficult. In this paper, we propose a new approach called Wavelet U-Net++ for accurately segmenting lung nodules. Our approach combines the U-Net++ architecture with wavelet pooling to capture both high-and low frequency information in the image, enabling improved segmentation accuracy. Specifically, we use the Haar wavelet transform to downsample the feature maps in the encoder, allowing for fine-grained details in the image to be captured. We evaluated our proposed approach on the LIDC-IDRI dataset, which consists of 1018 CT scans with annotated lung nodules. Our experimental results demonstrate that our approach outperforms several stateof-the-art segmentation methods, achieving a mean dice coefficient of 0.936 and a mean IoU of 0.878. Moreover, we show that wavelet pooling combined with Tversky and CE loss improves the network's ability to detect small and irregular nodules that are conventionally difficult to segment, demonstrating the effectiveness of combining loss functions. Overall, our proposed approach demonstrates the effectiveness of combining wavelet pooling with the U-Net++ architecture for accurate segmentation of lung nodules.
引用
收藏
页数:9
相关论文
共 23 条
[1]   Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling [J].
Alijamaat, Ali ;
NikravanShalmani, Alireza ;
Bayat, Peyman .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (09) :1459-1467
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Segmentation of pulmonary nodules in thoracic CT scans: A region growing approach [J].
Dehmeshi, Jamshid ;
Amin, Hamdan ;
Valdivieso, Manlio ;
Ye, Xujiong .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) :467-480
[4]   U-Net: deep learning for cell counting, detection, and morphometry [J].
Falk, Thorsten ;
Mai, Dominic ;
Bensch, Robert ;
Cicek, Oezguen ;
Abdulkadir, Ahmed ;
Marrakchi, Yassine ;
Boehm, Anton ;
Deubner, Jan ;
Jaeckel, Zoe ;
Seiwald, Katharina ;
Dovzhenko, Alexander ;
Tietz, Olaf ;
Dal Bosco, Cristina ;
Walsh, Sean ;
Saltukoglu, Deniz ;
Tay, Tuan Leng ;
Prinz, Marco ;
Palme, Klaus ;
Simons, Matias ;
Diester, Ilka ;
Brox, Thomas ;
Ronneberger, Olaf .
NATURE METHODS, 2019, 16 (01) :67-+
[5]   Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks [J].
Huang, Xia ;
Sun, Wenqing ;
Tseng, Tzu-Liang ;
Li, Chunqiang ;
Qian, Wei .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 74 :25-36
[6]   A novel approach to CAD system for the detection of lung nodules in CT images [J].
Javaid, Muzzamil ;
Javid, Moazzam ;
Rehman, Muhammad Zia Ur ;
Shah, Syed Irtiza Ali .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 135 :125-139
[7]  
Kishore VV, 2013, IEEE INT ADV COMPUT, P1131
[8]   Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images [J].
Kostis, WJ ;
Reeves, AP ;
Yankelevitz, DF ;
Henschke, CI .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (10) :1259-1274
[9]   Segmentation of pulmonary nodules of various densities with morphological approaches and convexity models [J].
Kubota, Toshiro ;
Jerebko, Anna K. ;
Dewan, Maneesh ;
Salganicoff, Marcos ;
Krishnan, Arun .
MEDICAL IMAGE ANALYSIS, 2011, 15 (01) :133-154
[10]   Morphological segmentation and partial volume analysis for volumetry of solid pulmonary lesions in thoracic CT scans [J].
Kuhnigk, JM ;
Dicken, V ;
Bornemann, L ;
Bakai, A ;
Wormanns, D ;
Krass, S ;
Peitgen, HO .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (04) :417-434