Multi-component super integrable Hamiltonian hierarchies

被引:5
作者
Wang, Haifeng [1 ]
Zhang, Yufeng [2 ]
Li, Chuanzhong [3 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
[2] Weifang Univ, Sch Math & Informat Sci, Weifang 261061, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Lie superalgebra; Multi-component super integrable hierarchy; Super Hamiltonian structure; SUPERSYMMETRIC EXTENSION; EQUATION; COUPLINGS; SYSTEMS;
D O I
10.1016/j.physd.2023.133918
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By constructing a new type of multi-component Lie superalgebra sl(2N,1), a method of generation of multi-component super integrable hierarchies is proposed. We discuss two applications and then obtain a coupled generalized super integrable Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and a multi-component generalized super integrable AKNS hierarchy respectively. Then, the super Hamiltonian structures of the resulting super integrable hierarchies are deduced by means of supertrace identity.
引用
收藏
页数:9
相关论文
共 50 条
[1]  
Ablowitz M.J., 1981, Solitons and the Inverse Scattering Transform
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
ADLER M, 1979, INVENT MATH, V50, P219
[4]   DOUBLE SCALING LIMIT OF THE SUPER-VIRASORO CONSTRAINTS [J].
ALVAREZGAUME, L ;
BECKER, K ;
BECKER, M ;
EMPARAN, R ;
MANES, J .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1993, 8 (13) :2297-2331
[5]  
Cheng S., 2012, Dualities and Representations of Lie Superalgebras, V144
[6]   The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group [J].
Devchand, C ;
Schiff, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) :260-273
[7]  
Dicky L.A., 1991, Soliton Equations and Hamiltonian Systems
[8]   On Hamiltonian perturbations of hyperbolic systems of conservation laws I: Quasi-triviality of bi-Hamiltonian perturbations [J].
Dubrovin, B ;
Liu, SQ ;
Zhang, YJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (04) :559-615
[9]   Bihamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy [J].
Falqui, G ;
Magri, F ;
Pedroni, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (02) :303-324
[10]  
[方芳 Fang Fang], 2020, [数学物理学报. A辑, Acta Mathematica Scientia], V40, P694