Mechanical properties of stainless steel by using high temperature microhardness tester

被引:0
|
作者
Passilly, Bruno [1 ]
Quelquejeu, Ariane [1 ]
Kardache, Amelie [1 ]
机构
[1] Univ Paris Saclay, DMAS, ONERA, 29 Ave Div Leclerc, F-92322 Chatillon, France
来源
MATERIAUX & TECHNIQUES | 2023年 / 111卷 / 04期
关键词
high temperature; microhardness; stainless steel; superalloy; mechanical resistance; haute temperature; microdurete; acier inoxydable; superalliage; resistance mecanique;
D O I
10.1051/mattech/2023021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the aeronautical field, materials are used in severe environmental conditions (temperature, atmosphere), particularly for engine applications. In order to qualify new alloys compositions, ONERA is developing micromechanical characterization means to carry out indentation tests from room temperature up to 700 degrees C under conditions close to operating conditions. This method presents the interest of performing tests faster than classical mechanical tests like tensile or bending tests under severe conditions and with small amounts of materials. In order to carry out screening tests, a 316L stainless steel is studied and the evolution of hot Vickers hardness properties and yield stress versus temperature are presented. By increasing the applied load from 0.1 to 20 N, we show that we can neglect surface microstructural changes or possible contamination of the sample surface by oxidation. We show that from 0.5 N, the hardness measurement is independent of load on 316L stainless steel. By using Tabor's law to express the mechanical resistance, we show that the hardness decreases by 50% when the test temperature goes from 20 to 700 degrees C, which is close to the supplier's values. A discussion on the use of indentation to determine mechanical resistance and the limitations of this technique is presented. In perspective, these measurements could be carried out at 1000 degrees C and on many different materials such as layers, coatings, composite materials, brazing cords or additive manufacturing materials. Dans le domaine aeronautique, les materiaux sont utilises dans des conditions environnementales severes (temperature, atmosphere), notamment pour les applications moteurs. Afin de qualifier de nouvelles compositions d'alliages, l'ONERA developpe des moyens de caracterisation micromecanique permettant de realiser des essais d'indentation allant de la temperature ambiante jusqu'a 700 degrees C dans des conditions proches des conditions operatoires. Cette methode presente l'interet de realiser des essais plus rapidement que les essais mecaniques classiques comme les essais de traction ou de flexion dans des conditions severes et avec de petites quantites de materiaux. Afin de realiser des tests en serie, un acier inoxydable 316L est etudie et l'evolution des proprietes de durete Vickers a chaud et de la resistance mecanique en fonction de la temperature sont presentees. En augmentant la charge appliquee de 0,1 a 20 N, nous montrons que nous pouvons negliger les changements microstructuraux de surface ou une eventuelle contamination de la surface de l'echantillon par oxydation. Nous montrons qu'a partir de 0,5 N, la mesure de durete est independante de la charge sur l'inox 316L. En utilisant la loi de Tabor pour exprimer la resistance mecanique, nous montrons que la durete diminue de 50 % lorsque la temperature d'essai passe de 20 a 700 degrees C, ce qui est proche des valeurs du fournisseur. Une discussion sur l'utilisation de l'indentation pour determiner la resistance mecanique et les limitations de cette technique est presentee. En perspective ces mesures pourraient etre effectuees a 1000 degrees C et sur de nombreux materiaux differents tels que des couches, des revetements, des materiaux composites, des cordons de brasage ou des materiaux de fabrication additive.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effect of Ce on the High Temperature Mechanical Properties of Martensitic Stainless Steel
    Liu, Xiao
    Li, Jianshe
    MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4, 2012, 538-541 : 1601 - +
  • [2] High temperature mechanical behaviour of δ-γ stainless steel
    Jiménez, JA
    Carreño, F
    Ruano, OA
    Carsí, M
    MATERIALS SCIENCE AND TECHNOLOGY, 1999, 15 (02) : 127 - 131
  • [3] MICROSTRUCTURE IMPACTS ON MECHANICAL PROPERTIES IN A HIGH TEMPERATURE AUSTENITIC STAINLESS-STEEL
    Purdy, D.
    Maziasz, P. J.
    Wharry, J.
    Dolph, C.
    ADVANCES IN MATERIALS TECHNOLOGY FOR FOSSIL POWER PLANTS: PROCEEDINGS FROM THE EIGHTH INTERNATIONAL CONFERENCE, 2016, 2016, : 377 - 387
  • [4] High-temperature mechanical properties of additively manufactured 420 stainless steel
    Bongao, Harveen
    Manjaiah, M.
    de Yro, Persia Ada
    Pasco, Jubert
    McCarthy, Thomas
    Nyamuchiwa, Kudakwashe
    Aranas Jr, Clodualdo
    MATERIALS RESEARCH EXPRESS, 2024, 11 (05)
  • [5] The effect of high temperature deformation on the mechanical properties of AISI 316 stainless steel
    Shabara, MAN
    INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS: ADVANCES AND APPLICATIONS, 1997, 2921 : 250 - 264
  • [6] The High-Temperature Mechanical Properties of EN 1.4509 Stainless Steel Cast Using Investment Casting
    Y. K. Hu
    W. M. Mao
    J. Jing
    X. M. Cheng
    Journal of Materials Engineering and Performance, 2019, 28 : 6603 - 6613
  • [7] The High-Temperature Mechanical Properties of EN 1.4509 Stainless Steel Cast Using Investment Casting
    Hu, Y. K.
    Mao, W. M.
    Jing, J.
    Cheng, X. M.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (11) : 6603 - 6613
  • [8] High temperature properties of an austenitic stainless steel
    Nikulin, I.
    Kaibyshev, R.
    Skorobogatykh, V.
    15TH INTERNATIONAL CONFERENCE ON THE STRENGTH OF MATERIALS (ICSMA-15), 2010, 240
  • [9] High-temperature mechanical properties evaluation of 310S stainless steel
    Zhang, Jingwei
    Li, Zhicheng
    Lin, Li
    Liu, Kanglin
    MATERIALS AT HIGH TEMPERATURES, 2023, 40 (06) : 479 - 491
  • [10] Effect of high-temperature molten salt corrosion on the mechanical properties of stainless steel
    Chen, Xia
    Xie, Ying
    Wu, Yuting
    Bian, Jiaojiao
    Ma, Chongfang
    CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2024, 59 (06) : 401 - 416