Predicting cutaneous malignant melanoma patients' survival using deep learning: a retrospective cohort study

被引:0
作者
Cai, Siyu [1 ]
Li, Wei [2 ]
Deng, Cong [3 ]
Tang, Qiao [4 ]
Zhou, Zhou [1 ]
机构
[1] Gen Hosp Western Theater Command PLA, Dept Hematol, 270 Rongdu Ave, Chengdu 610083, Sichuan, Peoples R China
[2] Capital Med Univ, Beijing Chest Hosp, Beijing TB & Thorac Tumor Res Inst, Canc Res Ctr, 9 Beiguan St, Beijing 101149, Peoples R China
[3] Gen Hosp Western Theater Command, Dept Resp & Crit Care Med, 270 Rongdu Ave, Chengdu 610083, Sichuan, Peoples R China
[4] Hosp Qionglai City, Dermatol Dept, Med Ctr, 172 Xinglin Rd, Chengdu 611500, Sichuan, Peoples R China
关键词
Cutaneous malignant melanoma; Survival; Neural network; Deep learning; RISK-FACTORS; MITOTIC RATE; EPIDEMIOLOGY; STAGE; NECK; HEAD; SURVEILLANCE; PROGNOSIS;
D O I
10.1007/s00432-023-05421-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BackgroundCutaneous malignant melanoma (CMM) has the worst prognosis among skin cancers, especially metastatic CMM. Predicting its prognosis accurately could direct clinical decisions.MethodsThe Surveillance, Epidemiology, and End Results database was screened to collect CMM patients' data. According to diagnosed time, patients were subdivided into three cohorts, train cohort (diagnosed between 2010 and 2013), validation cohort (diagnosed in 2014), and test cohort (diagnosed in 2015). Train cohort was used to train deep learning survival model for cutaneous malignant melanoma (DeepCMM). DeepCMM was then evaluated in train cohort and validation cohort internally, and validated in test cohort externally.ResultsDeepCMM showed 0.8270 (95% CI, confidence interval, CI 0.8260-0.8280) as area under the receiver operating characteristic curve (AUC) in train cohort, 0.8274 (95% CI 0.8286-0.8298) AUC in validation cohort, and 0.8303 (95% CI 0.8289-0.8316) AUC in test cohort. Then DeepCMM was packaged into a Windows 64-bit software for doctors to use.ConclusionDeep learning survival model for cutaneous malignant melanoma (DeepCMM) can offer a reliable prediction on cutaneous malignant melanoma patients' overall survival.
引用
收藏
页码:17103 / 17113
页数:11
相关论文
共 50 条
  • [1] Predicting cutaneous malignant melanoma patients’ survival using deep learning: a retrospective cohort study
    Siyu Cai
    Wei Li
    Cong Deng
    Qiao Tang
    Zhou Zhou
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 17103 - 17113
  • [2] Deep-learning-based survival prediction of patients with cutaneous malignant melanoma
    Yu, Hai
    Yang, Wei
    Wu, Shi
    Xi, Shaohui
    Xia, Xichun
    Zhao, Qi
    Ming, Wai-Kit
    Wu, Lifang
    Hu, Yunfeng
    Deng, Liehua
    Lyu, Jun
    FRONTIERS IN MEDICINE, 2023, 10
  • [3] Nomogram for predicting the survival of patients with malignant melanoma: A population analysis
    Yang, Jin
    Pan, Zhenyu
    Zhou, Quan
    Liu, Qingqing
    Zhao, Fanfan
    Feng, Xiaojie
    Lyu, Jun
    ONCOLOGY LETTERS, 2019, 18 (04) : 3591 - 3598
  • [4] Malignant Melanoma in a Retrospective Cohort of Immunocompromised Patients: A Statistical and Pathologic Analysis
    Killeen, Trevor F.
    Shanley, Ryan
    Ramesh, Vidhyalakshmi
    Giubellino, Alessio
    CANCERS, 2023, 15 (14)
  • [5] Cutaneous Malignant Melanoma: a Retrospective Study of Seven Years (2006-2012)
    Moreira, Jorge
    Moreira, Elisabete
    Azevedo, Filomena
    Mota, Alberto
    ACTA MEDICA PORTUGUESA, 2014, 27 (04): : 480 - 488
  • [6] Sentinel lymph node biopsy in patients with T1a cutaneous malignant melanoma: A multicenter cohort study
    Shannon, Adrienne B.
    Sharon, Cimarron E.
    Straker, Richard J., III
    Carr, Michael J.
    Sinnamon, Andrew J.
    Bogatch, Kita
    Thaler, Alexandra
    Kelly, Nicholas
    Vetto, John T.
    Fowler, Graham
    DePalo, Danielle
    Sondak, Vernon K.
    Miura, John T.
    Faries, Mark B.
    Bartlett, Edmund K.
    Zager, Jonathan S.
    Karakousis, Giorgos C.
    JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2023, 88 (01) : 52 - 59
  • [7] A nomogram for predicting survival in patients with nodular melanoma A population-based study
    Yang, Jin
    Pan, Zhenyu
    Zhao, Fanfan
    Feng, Xiaojie
    Liu, Qingqing
    Li, Yuanjie
    Lyu, Jun
    MEDICINE, 2019, 98 (24)
  • [8] Histopathological evaluation of cutaneous malignant melanoma: A retrospective study
    Mutu, Daniela-Elena Gheoca
    Avino, Adelaida
    Balcangiu-Stroescu, Andra-Elena
    Mehedintu, Mihai
    Balan, Daniela Gabriela
    Brinduse, Lacramioara Aurelia
    Popescu, Ana-Maria
    Ionescu, Dorin
    Cristea, Bogdan-Mihai
    Tomescu, Luminita Florentina
    Jecan, Cristian-Radu
    Raducu, Laura
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2022, 23 (06)
  • [9] Sinonasal mucosal melanoma: retrospective survival study of 25 patients
    Vandenhende, C.
    Leroy, X.
    Chevalier, D.
    Mortuaire, G.
    JOURNAL OF LARYNGOLOGY AND OTOLOGY, 2012, 126 (02) : 147 - 151
  • [10] Development and validation of a deep learning model for predicting postoperative survival of patients with gastric cancer
    Wu, Mengjie
    Yang, Xiaofan
    Liu, Yuxi
    Han, Feng
    Li, Xi
    Wang, Jufeng
    Guo, Dandan
    Tang, Xiance
    Lin, Lu
    Liu, Changpeng
    BMC PUBLIC HEALTH, 2024, 24 (01)