Quasi -Solid -State Composite Electrolytes with Multifunctional 2D Molecular Brush Fillers for Long-Cycling Lithium Metal Batteriest

被引:8
作者
Cui, Yin [1 ]
Yu, Guofang [1 ]
Liu, Ruliang [2 ]
Miao, Dongtian [1 ]
Wu, Dingcai [1 ]
机构
[1] Sun Yat Sen Univ, Sch Chem, PCFM Lab, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Univ Educ, Sch Chem & Mat Sci, Guangzhou 510303, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-solid-state composite electrolyte; Filler; 2D molecular brush; Lithium metal battery; Poly(ionic liquid); POLYMER ELECTROLYTE; PERFORMANCE; CONDUCTIVITY;
D O I
10.1002/cjoc.202300232
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ever-growing demand for next-generation high -energy-density devices drives the development of lithium metal batteries with enough safety and high performance, in which quasi -solid-state composite electrolytes (QSCEs) with high ionic conductivity and lithium ion transference number (t(Li+)) are highly desirable. Herein, we successfully synthesize a kind of two-dimensional (2D) molecular brush (GO-g-PFIL) via grafting poly(ionic liquid) side-chain (poly(3-(3,3,4,4,4-pentafluorobutyl)-1-vinyl-1H-imidazol-3-ium bis(trifluoromethanesulfonyl)imide), denoted as PFIL) on the surface of 2D graphene oxide (GO) sheet. GO-g-PFIL is used as multifunctional filler to prepare novel composite membranes and corresponding QSCEs (e.g., QSCE-PH/GPFIL3/P). The as -obtained QSCE-P1-1/GPFIL3/P integrates features of PFIL side-chain -enhanced lithium ion conduction, poly(vinylidene fluoride-co-hexafluoropropene) backbone -induced flexibility, and GO-strengthened mechanical property. As a result, our ultrathin (21 tim) self-supporting QSCE-P1-1/GPFIL3/P exhibits high ionic conductivity (3.24 x 10(-4) S"CM-1) and excellent tLj+ (0.82) at room temperature, and Li/LFP full cell with QSCE-PH/GPFIL30 shows superior rate performance (high specific capacities of 79 mAh-g(-1) at 30 degrees C and 5 C) and excellent cycling performance (high capacity retention of 91% after 500 cycles at 80 C and 1 C).
引用
收藏
页码:2848 / 2854
页数:7
相关论文
共 41 条
[1]   A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhang, Jun ;
Zhou, Xingyi ;
Zhao, Fei ;
Shi, Ye ;
Goodenough, John B. ;
Yu, Guihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) :2096-2100
[2]   Poly(ionic liquid)-functionalized graphene oxide towards ambient temperature operation of all-solid-state PEO-based polymer electrolyte lithium metal batteries [J].
Bao, Wei ;
Hu, Zhenyuan ;
Wang, Yaying ;
Jiang, Jianghong ;
Huo, Shikang ;
Fan, Weizhen ;
Chen, Weijie ;
Jing, Xiao ;
Long, Xinyang ;
Zhang, Yunfeng .
CHEMICAL ENGINEERING JOURNAL, 2022, 437
[3]   Electrolyte Engineering for Safer Lithium-Ion Batteries: A Review [J].
Cao, Chencheng ;
Zhong, Yijun ;
Shao, Zongping .
CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (09) :1119-1141
[4]   A Flexible Dual-Ion Battery Based on PVDF-HFP-Modified Gel Polymer Electrolyte with Excellent Cycling Performance and Superior Rate Capability [J].
Chen, Guanghai ;
Zhang, Fan ;
Zhou, Zhiming ;
Li, Jinrui ;
Tang, Yongbing .
ADVANCED ENERGY MATERIALS, 2018, 8 (25)
[5]   In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries [J].
Chen, Likun ;
Gu, Tian ;
Ma, Jiabin ;
Yang, Ke ;
Shi, Peiran ;
Biao, Jie ;
Mi, Jinshuo ;
Liu, Ming ;
Lv, Wei ;
He, Yan-Bing .
NANO ENERGY, 2022, 100
[6]   High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery [J].
Gao, Lu ;
Li, Jianxin ;
Ju, Jingge ;
Cheng, Bowen ;
Kang, Weimin ;
Deng, Nanping .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :644-654
[7]   Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries [J].
Guo, Yanpeng ;
Li, Huiqiao ;
Zhai, Tianyou .
ADVANCED MATERIALS, 2017, 29 (29)
[8]  
Kim S., 2023, ADV MATER, V2206625
[9]  
Li H., 2023, CHEM-EUR J, V29
[10]   30 Years of Lithium-Ion Batteries [J].
Li, Matthew ;
Lu, Jun ;
Chen, Zhongwei ;
Amine, Khalil .
ADVANCED MATERIALS, 2018, 30 (33)