FECNet: a Neural Network and a Mobile App for COVID-19 Recognition

被引:8
|
作者
Zhang, Yu-Dong [1 ,2 ]
Govindaraj, Vishnuvarthanan [3 ]
Zhu, Ziquan [2 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Henan, Peoples R China
[2] Univ Leicester, Sch Comp & Math Sci, Leicester LE1 7RH, England
[3] Kalasalingam Acad Res & Educ, Dept Biomed Engn, Krishnankoil 626126, Tamil Nadu, India
基金
英国医学研究理事会; 中国国家自然科学基金;
关键词
COVID-19; Gray-level co-occurrence matrix; Varying-distance; Extreme learning machine; Multiple-way data augmentation; Mobile app; Cloud computing; CLASSIFICATION;
D O I
10.1007/s11036-023-02140-8
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
COVID-19 has caused over 6.35 million deaths and over 555 million confirmed cases till 11/July/2022. It has caused a serious impact on individual health, social and economic activities, and other aspects. Based on the gray-level co-occurrence matrix (GLCM), a four-direction varying-distance GLCM (FDVD-GLCM) is presented. Afterward, a five-property feature set (FPFS) extracts features from FDVD-GLCM. An extreme learning machine (ELM) is used as the classifier to recognize COVID-19. Our model is finally dubbed FECNet. A multiple-way data augmentation method is utilized to boost the training sets. Ten runs of tenfold cross-validation show that this FECNet model achieves a sensitivity of 92.23 & PLUSMN; 2.14, a specificity of 93.18 & PLUSMN; 0.87, a precision of 93.12 & PLUSMN; 0.83, and an accuracy of 92.70 & PLUSMN; 1.13 for the first dataset, and a sensitivity of 92.19 & PLUSMN; 1.89, a specificity of 92.88 & PLUSMN; 1.23, a precision of 92.83 & PLUSMN; 1.22, and an accuracy of 92.53 & PLUSMN; 1.37 for the second dataset. We develop a mobile app integrating the FECNet model, and this web app is run on a cloud computing-based client-server modeled construction. This proposed FECNet and the corresponding mobile app effectively recognize COVID-19, and its performance is better than five state-of-the-art COVID-19 recognition models.
引用
收藏
页码:1877 / 1890
页数:14
相关论文
共 50 条
  • [31] Randomly initialized convolutional neural network for the recognition of COVID-19 using X-ray images
    Ben Atitallah, Safa
    Driss, Maha
    Boulila, Wadii
    Ben Ghezala, Henda
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (01) : 55 - 73
  • [32] MoRES: A Mobile App to Help Elderly People Grasp and Comply with COVID-19 Restrictions
    Ramon Lozano-Pinilla, Jose
    Garcia-Perez, Daniel
    Vicente-Chicote, Cristina
    GERONTECHNOLOGY III, IWOG 2020, 2021, : 35 - 42
  • [33] Apps for Covid-19 in Germany: assessment using the German Mobile App Rating Scale
    Holl, Felix
    Flemisch, Fabian
    Swoboda, Walter
    Schobel, Johannes
    JAMIA OPEN, 2022, 5 (04)
  • [34] Evaluation of the Design and Implementation of a Peer-To-Peer COVID-19 Contact Tracing Mobile App (COCOA) in Japan
    Nakamoto, Ichiro
    Jiang, Ming
    Zhang, Jilin
    Zhuang, Weiqing
    Guo, Yan
    Jin, Ming-Hui
    Huang, Yi
    Tang, Kuotai
    JMIR MHEALTH AND UHEALTH, 2020, 8 (12):
  • [35] Neural network powered COVID-19 spread forecasting model
    Wieczorek, Michal
    Silka, Jakub
    Wozniak, Marcin
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [36] Developing an artificial neural network for detecting COVID-19 disease
    Shanbehzadeh, Mostafa
    Nopour, Raoof
    Kazemi-Arpanahi, Hadi
    JOURNAL OF EDUCATION AND HEALTH PROMOTION, 2022, 11 (01) : 2
  • [37] Deep Convolutional Neural Network Approach for COVID-19 Detection
    Xue, Yu
    Onzo, Bernard-Marie
    Mansour, Romany F.
    Su, Shoubao
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 42 (01): : 201 - 211
  • [38] An Integrated Neural Network and SEIR Model to Predict COVID-19
    Zisad, Sharif Noor
    Hossain, Mohammad Shahadat
    Hossain, Mohammed Sazzad
    Andersson, Karl
    ALGORITHMS, 2021, 14 (03)
  • [39] DGCNN: deep convolutional generative adversarial network based convolutional neural network for diagnosis of COVID-19
    Laddha, Saloni
    Kumar, Vijay
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (22) : 31201 - 31218
  • [40] COVID-19 Detection via a 6-Layer Deep Convolutional Neural Network
    Hou, Shouming
    Han, Ji
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (02): : 855 - 869