FECNet: a Neural Network and a Mobile App for COVID-19 Recognition

被引:8
|
作者
Zhang, Yu-Dong [1 ,2 ]
Govindaraj, Vishnuvarthanan [3 ]
Zhu, Ziquan [2 ]
机构
[1] Henan Polytech Univ, Sch Comp Sci & Technol, Jiaozuo 454000, Henan, Peoples R China
[2] Univ Leicester, Sch Comp & Math Sci, Leicester LE1 7RH, England
[3] Kalasalingam Acad Res & Educ, Dept Biomed Engn, Krishnankoil 626126, Tamil Nadu, India
来源
MOBILE NETWORKS & APPLICATIONS | 2023年 / 28卷 / 05期
基金
中国国家自然科学基金; 英国医学研究理事会;
关键词
COVID-19; Gray-level co-occurrence matrix; Varying-distance; Extreme learning machine; Multiple-way data augmentation; Mobile app; Cloud computing; CLASSIFICATION;
D O I
10.1007/s11036-023-02140-8
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
COVID-19 has caused over 6.35 million deaths and over 555 million confirmed cases till 11/July/2022. It has caused a serious impact on individual health, social and economic activities, and other aspects. Based on the gray-level co-occurrence matrix (GLCM), a four-direction varying-distance GLCM (FDVD-GLCM) is presented. Afterward, a five-property feature set (FPFS) extracts features from FDVD-GLCM. An extreme learning machine (ELM) is used as the classifier to recognize COVID-19. Our model is finally dubbed FECNet. A multiple-way data augmentation method is utilized to boost the training sets. Ten runs of tenfold cross-validation show that this FECNet model achieves a sensitivity of 92.23 & PLUSMN; 2.14, a specificity of 93.18 & PLUSMN; 0.87, a precision of 93.12 & PLUSMN; 0.83, and an accuracy of 92.70 & PLUSMN; 1.13 for the first dataset, and a sensitivity of 92.19 & PLUSMN; 1.89, a specificity of 92.88 & PLUSMN; 1.23, a precision of 92.83 & PLUSMN; 1.22, and an accuracy of 92.53 & PLUSMN; 1.37 for the second dataset. We develop a mobile app integrating the FECNet model, and this web app is run on a cloud computing-based client-server modeled construction. This proposed FECNet and the corresponding mobile app effectively recognize COVID-19, and its performance is better than five state-of-the-art COVID-19 recognition models.
引用
收藏
页码:1877 / 1890
页数:14
相关论文
共 50 条
  • [31] Stay safe stay connected: surgical mobile app at the time of Covid-19 outbreak
    Barugola, Giuliano
    Bertocchi, Elisa
    Ruffo, Giacomo
    INTERNATIONAL JOURNAL OF COLORECTAL DISEASE, 2020, 35 (09) : 1781 - 1782
  • [32] Neural network powered COVID-19 spread forecasting model
    Wieczorek, Michal
    Silka, Jakub
    Wozniak, Marcin
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [33] Developing an artificial neural network for detecting COVID-19 disease
    Shanbehzadeh, Mostafa
    Nopour, Raoof
    Kazemi-Arpanahi, Hadi
    JOURNAL OF EDUCATION AND HEALTH PROMOTION, 2022, 11 (01) : 2
  • [34] Comparison of Convolutional Neural Network Architectures for COVID-19 Diagnosis
    Lopez-Betancur, Daniela
    Bosco Duran, Rembrandt
    Guerrero-Mendez, Carlos
    Zambrano Rodriguez, Rogelia
    Saucedo Anaya, Tonatiuh
    COMPUTACION Y SISTEMAS, 2021, 25 (03): : 601 - 615
  • [35] A Novel Convolutional Neural Network Architecture to Diagnose COVID-19
    Aara, Thabasum S.
    Pandian, Arunaggiri K.
    Kumar, Sai T. S.
    Prabalakshmi, A.
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 595 - 599
  • [36] Amalgamation of wavelet transform and neural network for COVID-19 detection
    Jain, Madhu
    Sharma, Renu
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2024, 44 (02) : 133 - 152
  • [37] Optimized Convolutional Neural Network for Automatic Detection of COVID-19
    Muthumayir, K.
    Buvana, M.
    Sekar, K. R.
    El Amraoui, Adnen
    Nouaouri, Issam
    Mansour, Romany F.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (01): : 1159 - 1175
  • [38] Deep Convolutional Neural Network Approach for COVID-19 Detection
    Xue, Yu
    Onzo, Bernard-Marie
    Mansour, Romany F.
    Su, Shoubao
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 42 (01): : 201 - 211
  • [39] An Integrated Neural Network and SEIR Model to Predict COVID-19
    Zisad, Sharif Noor
    Hossain, Mohammad Shahadat
    Hossain, Mohammed Sazzad
    Andersson, Karl
    ALGORITHMS, 2021, 14 (03)
  • [40] Classification of COVID-19 with Belief Functions and Deep Neural Network
    Saravana Kumar E.
    Ramkumar P.
    Naveen H.S.
    Ramamoorthy R.
    Naidu R.C.A.
    SN Computer Science, 4 (2)