A mixed FEM for the coupled Brinkman-Forchheimer/Darcy problem

被引:3
作者
Caucao, Sergio [1 ,2 ]
Discacciati, Marco [3 ]
机构
[1] Univ Catolica Santisima Concepcion, Dept Matemat & Fis Aplicadas, Casilla 297, Concepcion, Chile
[2] GIANuC 2, Grp Invest Anal Numer & Calculo Cientif, Concepcion, Chile
[3] Loughborough Univ, Dept Math Sci, Epinal Way, Loughborough LE11 3TU, England
关键词
Brinkman-Forchheimer problem; Darcy problem; Pressure -velocity formulation; Mixed finite element methods; A priori error analysis; FINITE-ELEMENT-METHOD; FLOW;
D O I
10.1016/j.apnum.2023.04.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops the a priori analysis of a mixed finite element method for the filtration of an incompressible fluid through a non-deformable saturated porous medium with heterogeneous permeability. Flows are governed by the Brinkman-Forchheimer and Darcy equations in the more and less permeable regions, respectively, and the corresponding transmission conditions are given by mass conservation and continuity of momentum. We consider the standard mixed formulation in the Brinkman-Forchheimer domain and the dual-mixed one in the Darcy region, and we impose the continuity of the normal velocities by introducing suitable Lagrange multiplier. The finite element discretization involves Bernardi-Raugel and Raviart-Thomas elements for the velocities, piecewise constants for the pressures, and continuous piecewise linear elements for the Lagrange multiplier. Stability, convergence, and a priori error estimates for the associated Galerkin scheme are obtained. Numerical tests illustrate the theoretical results.(c) 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 154
页数:17
相关论文
共 31 条
[1]   DISCRETE EXTENSION OPERATORS FOR MIXED FINITE ELEMENT SPACES ON LOCALLY REFINED MESHES [J].
Ainsworth, Mark ;
Guzman, Johnny ;
Sayas, Francisco-Javier .
MATHEMATICS OF COMPUTATION, 2016, 85 (302) :2639-2650
[2]  
[Anonymous], 1856, The Public Fountains of the City of Dijon (Appendix)
[3]  
[Anonymous], 1991, MIXED HYBRID FINITE
[4]   On the mixed finite element method with Lagrange multipliers [J].
Babuska, I ;
Gatica, GN .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (02) :192-210
[5]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[6]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[7]   A three-field Banach spaces-based mixed formulation for the unsteady Brinkman-Forchheimer equations [J].
Caucao, Sergio ;
Oyarzua, Ricardo ;
Villa-Fuentes, Segundo ;
Yotov, Ivan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 394
[8]   A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations [J].
Caucao, Sergio ;
Yotov, Ivan .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) :2708-2743
[9]   A fully-mixed formulation in Banach spaces for the coupling of the steady Brinkman-Forchheimer and double-diffusion equations [J].
Caucao, Sergio ;
Gatica, Gabriel N. ;
Ortega, Juan P. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (06) :2725-2758
[10]   A conforming mixed finite element method for the Navier-Stokes/Darcy-Forchheimer coupled problem [J].
Caucao, Sergio ;
Discacciati, Marco ;
Gatica, Gabriel N. ;
Oyarzua, Ricardo .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (05) :1689-1723