ANALYSIS OF THE IMPLICIT-EXPLICIT ULTRA-WEAK DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS

被引:1
|
作者
Wang, Haijin [1 ]
Xu, Anping [1 ]
Tao, Qi [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
来源
JOURNAL OF COMPUTATIONAL MATHEMATICS | 2024年 / 42卷 / 01期
基金
中国博士后科学基金;
关键词
The ultra-weak discontinuous Galerkin method; Convection-diffusion; Implicit-explicit time discretization; Stability; Error estimate; RUNGE-KUTTA METHODS; SUPERCONVERGENCE; SCHEMES;
D O I
10.4208/jcm.2202-m2021-0290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first present the optimal error estimates of the semi-discrete ultra-weak discontinuous Galerkin method for solving one-dimensional linear convection-diffusion equations. Then, coupling with a kind of Runge-Kutta type implicit-explicit time discretization which treats the convection term explicitly and the diffusion term implicitly, we analyze the stability and error estimates of the corresponding fully discrete schemes. The fully discrete schemes are proved to be stable if the time-step tau <= tau 0, where tau 0 is a constant independent of the mesh-size h. Furthermore, by the aid of a special projection and a careful estimate for the convection term, the optimal error estimate is also obtained for the third order fully discrete scheme. Numerical experiments are displayed to verify the theoretical results.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条