Triangles in r-wise t-intersecting families

被引:0
作者
Liao, Jiaqi [1 ]
Cao, Mengyu [2 ]
Lu, Mei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Renmin Univ China, Inst Math Sci, Beijing 100086, Peoples R China
基金
中国国家自然科学基金;
关键词
r-wise t-intersecting family; Triangle; Generalized Turan type problem; SYSTEMS; THEOREMS;
D O I
10.1016/j.ejc.2023.103731
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let t, r, k and n be positive integers and F a family of k-subsets of an n-set V. The family F is r-wise t-intersecting if for any F-1, . . . , F-r is an element of F, we have |boolean AND(r)(i=1) F-i| >= t. An r-wise t-intersecting family of r + 1 sets {T-1, . . . , Tr+1} is called an (r + 1, t)-triangle if |T-1 boolean AND center dot center dot center dot boolean AND Tr+1| <= t - 1. In this paper, we prove that if n >= n(0)(r, t, k), then the r-wise t-intersecting family F subset of (([n])(k)) containing the most (r + 1, t)-triangles is isomorphic to {F is an element of(([n])(k)) : |F boolean AND [r + t]| >= r + t - 1}. This can also be regarded k as a generalized Turan type result. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 13 条
[1]   The complete intersection theorem for systems of finite sets [J].
Ahlswede, R ;
Khachatrian, LH .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (02) :125-136
[2]   The complete nontrivial-intersection theorem for systems of finite sets [J].
Ahlswede, R ;
Khachatrian, LH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 76 (01) :121-138
[3]   The structure of large non-trivial t-intersecting families of finite sets [J].
Cao, Mengyu ;
Lv, Benjian ;
Wang, Kaishun .
EUROPEAN JOURNAL OF COMBINATORICS, 2021, 97
[4]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[5]   NONTRIVIAL INTERSECTING FAMILIES [J].
FRANKL, P ;
FUREDI, Z .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (01) :150-153
[6]   INTERSECTING FAMILIES OF FINITE SETS [J].
FRANKL, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (02) :146-161
[7]  
Frankl P., 1978, COLL MATH SOC J BOLY, V18, P365
[8]  
Frankl P, 2022, Arxiv, DOI arXiv:2106.05355
[9]  
Frankl P, 2021, Arxiv, DOI arXiv:2106.05344
[10]   On the maximum number of distinct intersections in an intersecting family [J].
Frankl, Peter ;
Kiselev, Sergei ;
Kupavskii, Andrey .
DISCRETE MATHEMATICS, 2022, 345 (04)