Improving Accuracy and Convergence in Group-Based Federated Learning on Non-IID Data

被引:10
|
作者
He, Ziqi [1 ]
Yang, Lei [1 ]
Lin, Wanyu [2 ]
Wu, Weigang [3 ]
机构
[1] South China Univ Technol, Coll Software Engn, Guangzhou 510006, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
[3] Sun Yat Sen Univ, Coll Comp Sci & Engn, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Delays; Statistics; Sociology; Genetic algorithms; Costs; Approximation algorithms; Data models; Federated learning; distributed machine learning; grouping algorithm; non-IID data;
D O I
10.1109/TNSE.2022.3163279
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Federated learning (FL) enables a large number of edge devices to learn a shared model without data sharing collaboratively. However, the imbalanced data distribution among users poses challenges to the convergence performance of FL. Group-based FL is a novel framework to improve FL performance, which appropriately groups users and allows localized aggregations within the group before a global aggregation. Nevertheless, most existing Group-based FL methods are K-means-based approaches that need to explicitly specify the number of groups, which may severely reduce the efficacy and optimality of the proposed solutions. In this paper, we propose a grouping mechanism called Auto-Group, which can automatically group users without specifying the number of groups. Specifically, various grouping strategies with different numbers of groups are generated with our mechanism. In particular, equipped with an optimized Genetic Algorithm, Auto-Group ensures that the data distribution of each group is similar to the global distribution, further reducing the communication delay. We conduct extensive experiments in various settings to evaluate Auto-Group. Experimental results show that, compared with the baselines, our mechanism can significantly improve the model accuracy while accelerating the training speed.
引用
收藏
页码:1389 / 1404
页数:16
相关论文
共 50 条
  • [21] Differentially Private Federated Learning on Non-iid Data: Convergence Analysis and Adaptive Optimization
    Chen, Lin
    Ding, Xiaofeng
    Bao, Zhifeng
    Zhou, Pan
    Jin, Hai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4567 - 4581
  • [22] FedEL: Federated ensemble learning for non-iid data
    Wu, Xing
    Pei, Jie
    Han, Xian-Hua
    Chen, Yen-Wei
    Yao, Junfeng
    Liu, Yang
    Qian, Quan
    Guo, Yike
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [23] Contractible Regularization for Federated Learning on Non-IID Data
    Chen, Zifan
    Wu, Zhe
    Wu, Xian
    Zhang, Li
    Zhao, Jie
    Yan, Yangtian
    Zheng, Yefeng
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 61 - 70
  • [24] Convergence Analysis of Cloud-Aided Federated Edge Learning on Non-IID Data
    Wang, Sai
    Gong, Yi
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [25] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [26] Dynamic Clustering Federated Learning for Non-IID Data
    Chen, Ming
    Wu, Jinze
    Yin, Yu
    Huang, Zhenya
    Liu, Qi
    Chen, Enhong
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 119 - 131
  • [27] Data augmentation scheme for federated learning with non-IID data
    Tang L.
    Wang D.
    Liu S.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (01): : 164 - 176
  • [28] Optimizing Federated Learning on Non-IID Data with Reinforcement Learning
    Wang, Hao
    Kaplan, Zakhary
    Niu, Di
    Li, Baochun
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 1698 - 1707
  • [29] Federated Learning Based on Diffusion Model to Cope with Non-IID Data
    Zhao, Zhuang
    Yang, Feng
    Liang, Guirong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 220 - 231
  • [30] Semi-Decentralized Federated Edge Learning for Fast Convergence on Non-IID Data
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Wang, Jessie Hui
    Zhang, Jun
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1898 - 1903