Improving Accuracy and Convergence in Group-Based Federated Learning on Non-IID Data

被引:10
作者
He, Ziqi [1 ]
Yang, Lei [1 ]
Lin, Wanyu [2 ]
Wu, Weigang [3 ]
机构
[1] South China Univ Technol, Coll Software Engn, Guangzhou 510006, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
[3] Sun Yat Sen Univ, Coll Comp Sci & Engn, Guangzhou 510006, Peoples R China
来源
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING | 2023年 / 10卷 / 03期
基金
中国国家自然科学基金;
关键词
Delays; Statistics; Sociology; Genetic algorithms; Costs; Approximation algorithms; Data models; Federated learning; distributed machine learning; grouping algorithm; non-IID data;
D O I
10.1109/TNSE.2022.3163279
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Federated learning (FL) enables a large number of edge devices to learn a shared model without data sharing collaboratively. However, the imbalanced data distribution among users poses challenges to the convergence performance of FL. Group-based FL is a novel framework to improve FL performance, which appropriately groups users and allows localized aggregations within the group before a global aggregation. Nevertheless, most existing Group-based FL methods are K-means-based approaches that need to explicitly specify the number of groups, which may severely reduce the efficacy and optimality of the proposed solutions. In this paper, we propose a grouping mechanism called Auto-Group, which can automatically group users without specifying the number of groups. Specifically, various grouping strategies with different numbers of groups are generated with our mechanism. In particular, equipped with an optimized Genetic Algorithm, Auto-Group ensures that the data distribution of each group is similar to the global distribution, further reducing the communication delay. We conduct extensive experiments in various settings to evaluate Auto-Group. Experimental results show that, compared with the baselines, our mechanism can significantly improve the model accuracy while accelerating the training speed.
引用
收藏
页码:1389 / 1404
页数:16
相关论文
共 50 条
  • [1] Personalized Federated Learning on Non-IID Data via Group-based Meta-learning
    Yang, Lei
    Huang, Jiaming
    Lin, Wanyu
    Cao, Jiannong
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (04)
  • [2] Federated learning on non-IID data: A survey
    Zhu, Hangyu
    Xu, Jinjin
    Liu, Shiqing
    Jin, Yaochu
    NEUROCOMPUTING, 2021, 465 : 371 - 390
  • [3] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [4] Federated Learning With Taskonomy for Non-IID Data
    Jamali-Rad, Hadi
    Abdizadeh, Mohammad
    Singh, Anuj
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8719 - 8730
  • [5] Semi-Decentralized Federated Edge Learning for Fast Convergence on Non-IID Data
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Wang, Jessie Hui
    Zhang, Jun
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1898 - 1903
  • [6] Coalitional Federated Learning: Improving Communication and Training on Non-IID Data With Selfish Clients
    Arisdakessian, Sarhad
    Wahab, Omar Abdel
    Mourad, Azzam
    Otrok, Hadi
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2462 - 2476
  • [7] Node Selection Toward Faster Convergence for Federated Learning on Non-IID Data
    Wu, Hongda
    Wang, Ping
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3099 - 3111
  • [8] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [9] Adaptive Federated Learning on Non-IID Data With Resource Constraint
    Zhang, Jie
    Guo, Song
    Qu, Zhihao
    Zeng, Deze
    Zhan, Yufeng
    Liu, Qifeng
    Akerkar, Rajendra
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (07) : 1655 - 1667
  • [10] A Study of Enhancing Federated Learning on Non-IID Data with Server Learning
    Mai V.S.
    La R.J.
    Zhang T.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (11): : 1 - 15