Effect of Solid Sodium Silicate on Workability, Hydration and Strength of Alkali-Activated GGBS/Fly Ash Paste

被引:8
|
作者
Dong, Tingkai [1 ]
Sun, Tao [2 ,3 ]
Xu, Fang [4 ]
Ouyang, Gaoshang [1 ]
Wang, Hongjian [5 ]
Yang, Fan [6 ]
Wang, Ziyan [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Adv Engn Technol Res Inst Zhongshan City, Wuhan 528400, Peoples R China
[4] China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R China
[5] Hubei Co, Shandong High Speed Maintenance Grp Co Ltd, Wuhan 430010, Peoples R China
[6] China Construct Adv Technol Inst, Wuhan 430073, Peoples R China
基金
国家重点研发计划;
关键词
solid powdered sodium silicate; workability; GGBS-fly ash blends; alkali activation; compressive strength; ONE-PART GEOPOLYMER; FLY-ASH; MECHANICAL-PROPERTIES; SLAG; TECHNOLOGY; BLENDS; CEMENT; PHASES; MIXES;
D O I
10.3390/coatings13040696
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on economic and environmental considerations, the recycling economy of mineral waste has been found to have great potential and economic benefits worldwide, in which alkali-activated cementitious materials are one of the main developing directions. The alkali activators commonly used in alkali-activated cementitious materials are the composite activators of sodium silicate solution and solid sodium hydroxide, which not only need to deal with high viscosity and corrosive chemicals, but also need to be prepared in advance and properly stored. In this paper, ground granulated blast furnace slag (GGBS) and fly ash were used as precursors, while solid sodium silicate powder was applied as the alkali activator. In addition, the precursors were mixed with the activator in advance and activated by adding water to prepare alkali-activated GGBS/fly ash cement. The influence of precursor components, the dosage of the alkali activator and the liquid-solid ratio on the working performance, mechanical strength and hydration process of alkali-activated cement was studied. The results showed that the further incorporation of GGBS accelerated the alkali activation reaction rate and improved the strength of the specimen. However, in the specimen with GGBS as the main component of the precursor, the main hydration product was C-A-S-H gel, which was different in the structural order and quantity. The compressive strength indicated that there was the best amount of activator to match it in terms of the precursor with certain components. A too high or too low amount of activator will hinder the alkali activation reaction. This study can provide some significant reference material for the use of solid alkali activators in alkali-activated cementitious materials.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Alkali-Activated Concrete Workability and Effect of Various Admixtures: A Review
    ELsayed, Nourhan
    Soliman, Ahmed
    PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 4, CSCE 2022, 2024, 367 : 729 - 738
  • [32] Effect of Silicate Content on the Properties of Alkali-Activated Blast Furnace Slag Paste
    Qureshi, Mohammed Nadeem
    Ghosh, Somnath
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (08) : 5905 - 5916
  • [33] Utilization of seawater in high calcium fly ash alkali-activated paste cured at ambient temperature
    Wongkvanklom, Athika
    Posi, Patcharapol
    Bangsai, Chaiwat
    Kasemsiri, Pornnapa
    Foytong, Piyawat
    Rukzon, Sumrerng
    Chindaprasirt, Prinya
    ADVANCES IN CONCRETE CONSTRUCTION, 2024, 18 (05) : 369 - 378
  • [34] Effect of retarders on flow and strength development of alkali-activated fly ash/blast furnace slag composite
    Sasaki, Kenta
    Kurumisawa, Kiyofumi
    Ibayashi, Kouhei
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 216 : 337 - 346
  • [35] Alkali-Activated Concrete Workability and Effect of Various Admixtures: A Review
    ELsayed, Nourhan
    Soliman, Ahmed
    PROCEEDINGS OF THE CANADIAN SOCIETY OF CIVIL ENGINEERING ANNUAL CONFERENCE 2022, VOL 3, CSCE 2022, 2024, 359 : 729 - 738
  • [36] Setting, Strength, and Autogenous Shrinkage of Alkali-Activated Fly Ash and Slag Pastes: Effect of Slag Content
    Nedeljkovic, Marija
    Li, Zhenming
    Ye, Guang
    MATERIALS, 2018, 11 (11):
  • [37] Combined effect of fly-ash and GGBS on performance of alkali activated concrete
    Banchhor S.
    Murmu M.
    Deo S.V.
    Journal of Building Pathology and Rehabilitation, 2022, 7 (1)
  • [38] Fresh and hardened properties of alkali-activated fly ash/slag binders: effect of fly ash source, surface area, and additives
    Wang, Yanru
    Cao, Yubin
    Ma, Yuwei
    Xiao, Shanshan
    Hu, Jie
    Wang, Hao
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2022, 11 (04) : 234 - 249
  • [39] Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash
    Singh, G. V. P. Bhagath
    Subramaniam, Kolluru V. L.
    CEMENT & CONCRETE COMPOSITES, 2019, 95 : 10 - 18
  • [40] Effect of Alkali-Activated Slag and Phosphogypsum Binder on the Strength and Workability of Cemented Paste Backfill and Its Environmental Impact
    Yan, Zepeng
    Yin, Shenghua
    Chen, Xun
    Yan, Rongfu
    Chen, Wei
    MINING METALLURGY & EXPLORATION, 2023, 40 (6) : 2411 - 2425