Machine Learning of Multi-Modal Tumor Imaging Reveals Trajectories of Response to Precision Treatment

被引:2
作者
Mansouri, Nesrin [1 ]
Balvay, Daniel [1 ]
Zenteno, Omar [1 ]
Facchin, Caterina [1 ,2 ]
Yoganathan, Thulaciga [1 ]
Viel, Thomas [1 ]
Herraiz, Joaquin Lopez [3 ,4 ]
Tavitian, Bertrand [1 ,5 ]
Perez-Liva, Mailyn [1 ,3 ,4 ]
机构
[1] Univ Paris Cite, INSERM, PARCC, F-75015 Paris, France
[2] Res Inst McGill Univ Hlth Ctr RI MUHC, Dept Med, Div Med Oncol, Canc Drug Res Lab, Montreal, PQ H4A 3J1, Canada
[3] Univ Complutense Madrid, Nucl Phys Grp, Madrid 28040, Spain
[4] Univ Complutense Madrid, Dept Struct Matter Thermal Phys & Elect, IPARCOS, CEI Moncloa, Madrid 28040, Spain
[5] Hop Europeen Georges Pompidou, AP HP, Radiol Dept, F-75015 Paris, France
基金
欧盟地平线“2020”;
关键词
multi-modal imaging; paraganglioma; machine learning; hierarchical clustering; treatment response; CANCER; PHEOCHROMOCYTOMAS; PARAGANGLIOMA; PREDICTION; HALLMARKS;
D O I
10.3390/cancers15061751
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary In order to evaluate precision cancer therapies, it would be advantageous to measure at the same time their action on tumor growth and on the biological target of the therapy. New non-invasive hybrid imaging techniques allow access to multiple quantitative parameters. Here, we trained machine learning classifiers of features extracted from longitudinal in vivo co-registered metabolic, vascular and anatomical images in a mouse model of paraganglioma. We show that machine learning identifies ensembles of tumor states that correspond to stages of tumor evolution with or without anti-angiogenic treatment. These classifiers define individual trajectories of tumor progression and response to treatment, supporting the use of machine learning analysis of multiparametric imaging for the identification of response to anti-angiogenic treatment in this rodent model. The standard assessment of response to cancer treatments is based on gross tumor characteristics, such as tumor size or glycolysis, which provide very indirect information about the effect of precision treatments on the pharmacological targets of tumors. Several advanced imaging modalities allow for the visualization of targeted tumor hallmarks. Descriptors extracted from these images can help establishing new classifications of precision treatment response. We propose a machine learning (ML) framework to analyze metabolic-anatomical-vascular imaging features from positron emission tomography, ultrafast Doppler, and computed tomography in a mouse model of paraganglioma undergoing anti-angiogenic treatment with sunitinib. Imaging features from the follow-up of sunitinib-treated (n = 8, imaged once-per-week/6-weeks) and sham-treated (n = 8, imaged once-per-week/3-weeks) mice groups were dimensionally reduced and analyzed with hierarchical clustering Analysis (HCA). The classes extracted from HCA were used with 10 ML classifiers to find a generalized tumor stage prediction model, which was validated with an independent dataset of sunitinib-treated mice. HCA provided three stages of treatment response that were validated using the best-performing ML classifier. The Gaussian naive Bayes classifier showed the best performance, with a training accuracy of 98.7 and an average area under curve of 100. Our results show that metabolic-anatomical-vascular markers allow defining treatment response trajectories that reflect the efficacy of an anti-angiogenic drug on the tumor target hallmark.
引用
收藏
页数:20
相关论文
共 59 条
[41]   A phase 2 trial of sunitinib in patients with progressive paraganglioma or pheochromocytoma: the SNIPP trial [J].
O'Kane, Grainne M. ;
Ezzat, Shereen ;
Joshua, Anthony M. ;
Bourdeau, Isabelle ;
Leibowitz-Amit, Raya ;
Olney, Harold J. ;
Krzyzanowska, Monika ;
Reuther, Dean ;
Chin, Soo ;
Wang, Lisa ;
Brooks, Kelly ;
Hansen, Aaron R. ;
Asa, Sylvia L. ;
Knox, Jennifer J. .
BRITISH JOURNAL OF CANCER, 2019, 120 (12) :1113-1119
[42]   Validation of a Method to Compensate Multicenter Effects Affecting CT Radiomics [J].
Orlhac, Fanny ;
Frouin, Frederique ;
Nioche, Christophe ;
Ayache, Nicholas ;
Buvat, Irene .
RADIOLOGY, 2019, 291 (01) :52-58
[43]   Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis [J].
Orlhac, Fanny ;
Soussan, Michael ;
Maisonobe, Jacques-Antoine ;
Garcia, Camilo A. ;
Vanderlinden, Bruno ;
Buvat, Irene .
JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (03) :414-422
[44]   Vascular Pattern Analysis for the Prediction of Clinical Behaviour in Pheochromocytomas and Paragangliomas [J].
Oudijk, Lindsey ;
van Nederveen, Francien ;
Badoual, Cecile ;
Tissier, Frederique ;
Tischler, Arthur S. ;
Smid, Marcel ;
Gaal, Jose ;
Lepoutre-Lussey, Charlotte ;
Gimenez-Roqueplo, Anne-Paule ;
Dinjens, Winand N. M. ;
Korpershoek, Esther ;
de Krijger, Ronald ;
Favier, Judith .
PLOS ONE, 2015, 10 (03)
[45]   Personalizing Medicine Through Hybrid Imaging and Medical Big Data Analysis [J].
Papp, Laszlo ;
Spielvogel, Clemens P. ;
Rausch, Ivo ;
Hacker, Marcus ;
Beyer, Thomas .
FRONTIERS IN PHYSICS, 2018, 6
[46]   Simultaneous positron emission tomography and ultrafast ultrasound for hybrid molecular, anatomical and functional imaging [J].
Provost, Jean ;
Garofalakis, Anikitos ;
Sourdon, Joevin ;
Bouda, Damien ;
Berthon, Beatrice ;
Viel, Thomas ;
Perez-Liva, Mailyn ;
Lussey-Lepoutre, Charlotte ;
Favier, Judith ;
Correia, Mafalda ;
Pernot, Mathieu ;
Chiche, Johanna ;
Pouyssegur, Jacques ;
Tanter, Mickael ;
Tavitian, Bertrand .
NATURE BIOMEDICAL ENGINEERING, 2018, 2 (02) :85-94
[47]  
Schwier M, 2019, SCI REP-UK, V9, DOI [10.1038/s41598-019-46880-8, 10.1038/s41598-019-45766-z]
[48]   A review of deep learning with special emphasis on architectures, applications and recent trends [J].
Sengupta, Saptarshi ;
Basak, Sanchita ;
Saikia, Pallabi ;
Paul, Sayak ;
Tsalavoutis, Vasilios ;
Atiah, Frederick ;
Ravi, Vadlamani ;
Peters, Alan .
KNOWLEDGE-BASED SYSTEMS, 2020, 194
[49]  
Shibuya Masabumi, 2011, Genes Cancer, V2, P1097, DOI 10.1177/1947601911423031
[50]   Bias in random forest variable importance measures: Illustrations, sources and a solution [J].
Strobl, Carolin ;
Boulesteix, Anne-Laure ;
Zeileis, Achim ;
Hothorn, Torsten .
BMC BIOINFORMATICS, 2007, 8 (1)