Machine Learning of Multi-Modal Tumor Imaging Reveals Trajectories of Response to Precision Treatment

被引:2
作者
Mansouri, Nesrin [1 ]
Balvay, Daniel [1 ]
Zenteno, Omar [1 ]
Facchin, Caterina [1 ,2 ]
Yoganathan, Thulaciga [1 ]
Viel, Thomas [1 ]
Herraiz, Joaquin Lopez [3 ,4 ]
Tavitian, Bertrand [1 ,5 ]
Perez-Liva, Mailyn [1 ,3 ,4 ]
机构
[1] Univ Paris Cite, INSERM, PARCC, F-75015 Paris, France
[2] Res Inst McGill Univ Hlth Ctr RI MUHC, Dept Med, Div Med Oncol, Canc Drug Res Lab, Montreal, PQ H4A 3J1, Canada
[3] Univ Complutense Madrid, Nucl Phys Grp, Madrid 28040, Spain
[4] Univ Complutense Madrid, Dept Struct Matter Thermal Phys & Elect, IPARCOS, CEI Moncloa, Madrid 28040, Spain
[5] Hop Europeen Georges Pompidou, AP HP, Radiol Dept, F-75015 Paris, France
基金
欧盟地平线“2020”;
关键词
multi-modal imaging; paraganglioma; machine learning; hierarchical clustering; treatment response; CANCER; PHEOCHROMOCYTOMAS; PARAGANGLIOMA; PREDICTION; HALLMARKS;
D O I
10.3390/cancers15061751
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary In order to evaluate precision cancer therapies, it would be advantageous to measure at the same time their action on tumor growth and on the biological target of the therapy. New non-invasive hybrid imaging techniques allow access to multiple quantitative parameters. Here, we trained machine learning classifiers of features extracted from longitudinal in vivo co-registered metabolic, vascular and anatomical images in a mouse model of paraganglioma. We show that machine learning identifies ensembles of tumor states that correspond to stages of tumor evolution with or without anti-angiogenic treatment. These classifiers define individual trajectories of tumor progression and response to treatment, supporting the use of machine learning analysis of multiparametric imaging for the identification of response to anti-angiogenic treatment in this rodent model. The standard assessment of response to cancer treatments is based on gross tumor characteristics, such as tumor size or glycolysis, which provide very indirect information about the effect of precision treatments on the pharmacological targets of tumors. Several advanced imaging modalities allow for the visualization of targeted tumor hallmarks. Descriptors extracted from these images can help establishing new classifications of precision treatment response. We propose a machine learning (ML) framework to analyze metabolic-anatomical-vascular imaging features from positron emission tomography, ultrafast Doppler, and computed tomography in a mouse model of paraganglioma undergoing anti-angiogenic treatment with sunitinib. Imaging features from the follow-up of sunitinib-treated (n = 8, imaged once-per-week/6-weeks) and sham-treated (n = 8, imaged once-per-week/3-weeks) mice groups were dimensionally reduced and analyzed with hierarchical clustering Analysis (HCA). The classes extracted from HCA were used with 10 ML classifiers to find a generalized tumor stage prediction model, which was validated with an independent dataset of sunitinib-treated mice. HCA provided three stages of treatment response that were validated using the best-performing ML classifier. The Gaussian naive Bayes classifier showed the best performance, with a training accuracy of 98.7 and an average area under curve of 100. Our results show that metabolic-anatomical-vascular markers allow defining treatment response trajectories that reflect the efficacy of an anti-angiogenic drug on the tumor target hallmark.
引用
收藏
页数:20
相关论文
共 59 条
[1]   Machine learning and feature selection for drug response prediction in precision oncology applications [J].
Ali M. ;
Aittokallio T. .
Biophysical Reviews, 2019, 11 (1) :31-39
[2]   International consensus on initial screening and follow-up of asymptomatic SDHx mutation carriers [J].
Amar, Laurence ;
Pacak, Karel ;
Steichen, Olivier ;
Akker, Scott A. ;
Aylwin, Simon J. B. ;
Baudin, Eric ;
Buffet, Alexandre ;
Burnichon, Nelly ;
Clifton-Bligh, Roderick J. ;
Dahia, Patricia L. M. ;
Fassnacht, Martin ;
Grossman, Ashley B. ;
Herman, Philippe ;
Hicks, Rodney J. ;
Januszewicz, Andrzej ;
Jimenez, Camilo ;
Kunst, Henricus P. M. ;
Lewis, Dylan ;
Mannelli, Massimo ;
Naruse, Mitsuhide ;
Robledo, Mercedes ;
Taieb, David ;
Taylor, David R. ;
Timmers, Henri J. L. M. ;
Treglia, Giorgio ;
Tufton, Nicola ;
Young, William F. ;
Lenders, Jacques W. M. ;
Gimenez-Roqueplo, Anne-Paule ;
Lussey-Lepoutre, Charlotte .
NATURE REVIEWS ENDOCRINOLOGY, 2021, 17 (07) :435-444
[3]  
[Anonymous], 1989, CANCER METAST REV, V8, P82
[4]   Evaluation of immunohistochemical markers in non-small cell lung cancer by unsupervised hierarchical clustering analysis: a tissue microarray study of 284 cases and 18 markers [J].
Au, NHC ;
Cheang, M ;
Huntsman, DG ;
Yorida, E ;
Coldman, A ;
Elliott, WM ;
Bebb, G ;
Flint, J ;
English, J ;
Gilks, CB ;
Grimes, HL .
JOURNAL OF PATHOLOGY, 2004, 204 (01) :101-109
[5]   Beyond imaging: The promise of radiomics [J].
Avanzo, Michele ;
Stancanello, Joseph ;
El Naqa, Issam .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2017, 38 :122-139
[6]   Treatment with Sunitinib for Patients with Progressive Metastatic Pheochromocytomas and Sympathetic Paragangliomas [J].
Ayala-Ramirez, Montserrat ;
Chougnet, Cecile N. ;
Habra, Mouhammed Amir ;
Palmer, J. Lynn ;
Leboulleux, Sophie ;
Cabanillas, Maria E. ;
Caramella, Caroline ;
Anderson, Pete ;
Al Ghuzlan, Abir ;
Waguespack, Steven G. ;
Deandreis, Desiree ;
Baudin, Eric ;
Jimenez, Camilo .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2012, 97 (11) :4040-4050
[7]   Skeletonization method for vessel delineation of arteriovenous malformation [J].
Babin, D. ;
Pizurica, A. ;
Velicki, L. ;
Matic, V. ;
Galic, I. ;
Leventic, H. ;
Zlokolica, V. ;
Philips, W. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 93 :93-105
[8]   Brain blood vessel segmentation using line-shaped profiles [J].
Babin, Danilo ;
Pizurica, Aleksandra ;
De Vylder, Jonas ;
Vansteenkiste, Ewout ;
Philips, Wilfried .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (22) :8041-8061
[9]   Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma [J].
Ben Aim, Laurene ;
Pigny, Pascal ;
Castro-Vega, Luis Jaime ;
Buffet, Alexandre ;
Amar, Laurence ;
Bertherat, Jerome ;
Drui, Deiphine ;
Guilhem, Isabelle ;
Baudin, Eric ;
Lussey-Lepoutre, Charlotte ;
Corsini, Carole ;
Chabrier, Gerard ;
Briet, Claire ;
Faivre, Laurence ;
Cardot-Bauters, Catherine ;
Favier, Judith ;
Gimenez-Roqueplo, Anne-Paule ;
Burnichon, Nelly .
JOURNAL OF MEDICAL GENETICS, 2019, 56 (08) :513-520
[10]   Machine Learning in Oncology: Methods, Applications, and Challenges [J].
Bertsimas, Dimitris ;
Wiberg, Holly .
JCO CLINICAL CANCER INFORMATICS, 2020, 4 :885-894