PLGA Nanoparticles Loaded with Sorafenib Combined with Thermosensitive Hydrogel System and Microwave Hyperthermia for Multiple Sensitized Radiotherapy

被引:8
作者
Wang, Ziqi [1 ]
Liu, Bo [1 ]
Tu, Jingyao [1 ]
Xiang, Jingfeng [2 ,3 ]
Xiong, Hui [4 ]
Wu, Yue [5 ]
Ding, Shuaijie [6 ,7 ]
Zhu, Daoming [2 ,3 ]
Zhu, Dongyong [8 ]
Liu, Fei [1 ]
Hu, Guangyuan [1 ]
Yuan, Xianglin [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Oncol, Wuhan 430030, Peoples R China
[2] Southern Med Univ, Nanfang Hosp, Sch Clin Med 1, Guangdong Prov Key Lab Precis Med Gastrointestinal, Guangzhou 510515, Peoples R China
[3] Southern Med Univ, Nanfang Hosp, Sch Clin Med 1, Dept Gen Surg, Guangzhou 510515, Peoples R China
[4] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Thorac Surg, Wuhan 430030, Peoples R China
[5] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Urol, Wuhan 430030, Peoples R China
[6] Southern Univ Sci & Technol, Jinan Univ, Affiliated Hosp 1, Dept Gastrointestinal Surg,Shenzhen Peoples Hosp,C, Shenzhen 518020, Peoples R China
[7] Southern Univ Sci & Technol, Jinan Univ, Affiliated Hosp 1, Dept Geriat,Shenzhen Peoples Hosp,Clin Med Coll 2, Shenzhen 518020, Peoples R China
[8] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Radiol, Wuhan 430030, Peoples R China
基金
中国国家自然科学基金;
关键词
sorafenib; PLGA nanoparticles; microwave hyperthermia; radiotherapy; breast cancer; PHOTOTHERMAL THERAPY; CANCER; NANOMATERIALS; APOPTOSIS; ENHANCE; OXYGEN; CELLS;
D O I
10.3390/pharmaceutics15020487
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Hypoxia is typically the leading cause of radiotherapy (RT) resistance in solid tumors, and glutathione (GSH) overexpression in tumor cells is a potent antioxidant mechanism that protects tumor cells from radiation damage. Herein, we developed a sorafenib (SFN) loaded-PLGA hydrogel system (SPH) in combination with microwave (MW) hyperthermia for RT sensitization. SPH with stable properties was produced by combining SFN and PLGA in a specific ratio and encapsulating the mixture in agarose hydrogel. Intratumoral injection of SPH to mice combined with MW hyperthermia can not only directly cause thermal damage to tumor cells, but also increase blood oxygen delivery to the tumor site, thus overcoming the problem of intratumoral hypoxia and achieving "first layer" RT sensitization. Moreover, high temperatures can cause the hydrogel to disintegrate and release SFN. Not only can SFN inhibit tumor growth, but it can also achieve the "second layer" of RT sensitization by inhibiting glutathione (GSH) synthesis in cells and increasing reactive oxygen species (ROS) production. Experiments, both in vitro and in vivo, have indicated that SPH and MW hyperthermia can achieve a double RT sensitization effect and a significant tumor inhibition effect. In conclusion, combining our SPH nanosystem and thermoradiotherapy is a promising anti-tumor treatment.
引用
收藏
页数:15
相关论文
共 57 条
[1]   Molecular insight of regorafenib treatment for colorectal cancer [J].
Arai, Hiroyuki ;
Battaglin, Francesca ;
Wang, Jingyuan ;
Lo, Jae Ho ;
Soni, Shivani ;
Zhang, Wu ;
Lenz, Heinz-Josef .
CANCER TREATMENT REVIEWS, 2019, 81
[2]   Sub-100 nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors [J].
Ayala-Orozco, Ciceron ;
Urban, Cordula ;
Bishnoi, Sandra ;
Urban, Alexander ;
Charron, Heather ;
Mitchell, Tamika ;
Shea, Martin ;
Nanda, Sarmistha ;
Schiff, Rachel ;
Halas, Naomi ;
Joshi, Amit .
JOURNAL OF CONTROLLED RELEASE, 2014, 191 :90-97
[3]   The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy [J].
Babaei, Mohammad ;
Ganjalikhani, Maryam .
BIOIMPACTS, 2014, 4 (01) :15-20
[4]   Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy [J].
Chen, Qian ;
Xu, Ligeng ;
Liang, Chao ;
Wang, Chao ;
Peng, Rui ;
Liu, Zhuang .
NATURE COMMUNICATIONS, 2016, 7
[5]   Micro-Nanomaterials for Tumor Microwave Hyperthermia Design Preparation, and Application [J].
Chen, Xue ;
Tan, Longfei ;
Liu, Tianlong ;
Meng, Xianwei .
CURRENT DRUG DELIVERY, 2017, 14 (03) :307-322
[6]   Phase I dose-finding study of sorafenib with FOLFOX4 as first-line treatment in patients with unresectable locally advanced or metastatic gastric cancer [J].
Chi, Yihebali ;
Yang, Jianliang ;
Yang, Sheng ;
Sun, Yongkun ;
Jia, Bo ;
Shi, Yuankai .
CHINESE JOURNAL OF CANCER RESEARCH, 2015, 27 (03) :239-246
[7]   Aggressive thyroid cancer: targeted therapy with sorafenib [J].
Corrado, Alda ;
Ferrari, Silvia M. ;
Politti, Ugo ;
Mazzi, Valeria ;
Miccoli, Mario ;
Materazzi, Gabriele ;
Antonelli, Alessandro ;
Ulisse, Salvatore ;
Fallahi, Poupak ;
Miccoli, Paolo .
MINERVA ENDOCRINOLOGICA, 2017, 42 (01) :64-76
[8]   Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer [J].
Deng, Junjie ;
Xu, Shandong ;
Hu, Weike ;
Xun, Xiaojie ;
Zheng, Liyuan ;
Su, Ming .
BIOMATERIALS, 2018, 154 :24-33
[9]   Amplification of Tumor Oxidative Stresses with Liposomal Fenton Catalyst and Glutathione Inhibitor for Enhanced Cancer Chemotherapy and Radiotherapy [J].
Dong, Ziliang ;
Feng, Liangzhu ;
Chao, Yu ;
Hao, Yu ;
Chen, Muchao ;
Gong, Fei ;
Han, Xiao ;
Zhang, Rui ;
Cheng, Liang ;
Liu, Zhuang .
NANO LETTERS, 2019, 19 (02) :805-815
[10]   Hyperthermia in oncology [J].
Falk, MH ;
Issels, RD .
INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2001, 17 (01) :1-18