Evaluating the influence of seasonal stratification on mercury methylation rates in the water column and sediment in a contaminated section of a western USA reservoir
被引:5
作者:
Millard, Geoffrey
论文数: 0引用数: 0
h-index: 0
机构:
USA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USAUSA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USA
Millard, Geoffrey
[1
]
Eckley, Chris S.
论文数: 0引用数: 0
h-index: 0
机构:
USA Environm Protect Agcy, Reg 10,1200 Sixth Ave,Suite 155, Seattle, WA 98101 USAUSA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USA
Eckley, Chris S.
[2
]
Luxton, Todd P.
论文数: 0引用数: 0
h-index: 0
机构:
USA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USAUSA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USA
Luxton, Todd P.
[1
]
Krabbenhoft, David
论文数: 0引用数: 0
h-index: 0
机构:
USA Geol Survey, Mercury Res Lab, 2280 Woodale Dr, Mounds View, MN 55112 USAUSA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USA
Krabbenhoft, David
[3
]
Goetz, Jennifer
论文数: 0引用数: 0
h-index: 0
机构:
USA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USAUSA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USA
Goetz, Jennifer
[1
]
McKernan, John
论文数: 0引用数: 0
h-index: 0
机构:
USA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USAUSA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USA
McKernan, John
[1
]
DeWild, John
论文数: 0引用数: 0
h-index: 0
机构:
USA Geol Survey, Mercury Res Lab, 2280 Woodale Dr, Mounds View, MN 55112 USAUSA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USA
DeWild, John
[3
]
机构:
[1] USA Environm Protect Agcy, Off Res & Dev, 26 W Martin Luther King Dr, Cincinnati, OH 45220 USA
[2] USA Environm Protect Agcy, Reg 10,1200 Sixth Ave,Suite 155, Seattle, WA 98101 USA
[3] USA Geol Survey, Mercury Res Lab, 2280 Woodale Dr, Mounds View, MN 55112 USA
Mercury methylation frequently occurs at the active oxic/anoxic boundary between the sediment bed and water column of lakes and reservoirs. Previous studies suggest that the predominant mercury methylation zone moves to the water column during periods of stratification and that high potential methylation rates (Km) in sediment require oxygenated overlying water. However, simultaneous measurements of methylmercury (MeHg) produc-tion in both the sediment and water column remain limited. Understanding the relative importance of sediment versus water column methylation and the impact of seasonal stratification on these processes has important implications for managing MeHg production. This study measured Km and potential demethylation rates (Kdm) using stable isotope tracers of unfiltered inorganic mercury and MeHg in sediments and water of the littoral and profundal zones of a shallow branch of the Nacimiento Reservoir in California's central coastal range. Field sampling was conducted once during winter (well-mixed/oxygenated conditions) and once during late summer (thermally stratified/anoxic conditions). The results showed very high ambient MeHg concentrations in hypo-limnetic waters (up to 7.5 ng L-1; 79% MeHg/total Hg). During late summer, littoral sediments had higher Km (0.024 day -1) compared to profundal sediments (0.013 day -1). Anoxic water column Km were of similar magnitude to Km in the sediment (0.03 day -1). Following turnover, profundal sediment Km did not change significantly, but water column Km became insignificant. Summer and winter sediment Kdm were higher in profundal (2.35, 3.54 day -1, respectively) compared to the littoral sediments (0.52, 2.56 day -1, respectively). When modelled, Km in the water column could account for approximately 40% of the hypolimnetic MeHg. Our modelling results show that the remaining MeHg in the hypolimnion could originate from the profundal sedi-ment. While further study is needed, these results suggest that addressing methylation in the water column and profundal sediment are of equal importance to any remediation strategy.