PANNA 2.0: Efficient neural network interatomic potentials and new architectures

被引:4
|
作者
Pellegrini, Franco [1 ]
Lot, Ruggero [1 ]
Shaidu, Yusuf [1 ,2 ,3 ]
Kucukbenli, Emine [4 ,5 ]
机构
[1] Scuola Int Super Studi Avanzati, Trieste, Italy
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Nvidia Corp, Santa Clara, CA 95051 USA
[5] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
SIMULATIONS;
D O I
10.1063/5.0158075
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present the latest release of PANNA 2.0 (Properties from Artificial Neural Network Architectures), a code for the generation of neural network interatomic potentials based on local atomic descriptors and multilayer perceptrons. Built on a new back end, this new release of PANNA features improved tools for customizing and monitoring network training, better graphics processing unit support including a fast descriptor calculator, new plugins for external codes, and a new architecture for the inclusion of long-range electrostatic interactions through a variational charge equilibration scheme. We present an overview of the main features of the new code, and several benchmarks comparing the accuracy of PANNA models to the state of the art, on commonly used benchmarks as well as richer datasets.
引用
收藏
页数:9
相关论文
共 36 条
  • [1] PANNA: Properties from Artificial Neural Network Architectures
    Lot, Ruggero
    Pellegrini, Franco
    Shaidu, Yusuf
    Kucukbenli, Emine
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 256
  • [2] SIMPLE-NN: An efficient package for training and executing neural-network interatomic potentials
    Lee, Kyuhyun
    Yoo, Dongsun
    Jeong, Wonseok
    Han, Seungwu
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 242 : 95 - 103
  • [3] An automated approach for developing neural network interatomic potentials with FLAME
    Mirhosseini, Hossein
    Tahmasbi, Hossein
    Kuchana, Sai Ram
    Ghasemi, S. Alireza
    Kuehne, Thomas D.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
  • [4] Neural network interatomic potentials for open surface nano-mechanics applications
    Naghdi, Amirhossein D.
    Pellegrini, Franco
    Kucukbenli, Emine
    Massa, Dario
    Dominguez-Gutierrez, F. Javier
    Kaxiras, Efthimios
    Papanikolaou, Stefanos
    ACTA MATERIALIA, 2024, 277
  • [5] How graph neural network interatomic potentials extrapolate: Role of the message-passing algorithm
    Kang, Sungwoo
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (24)
  • [6] Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
    Ghasemi, S. Alireza
    Hofstetter, Albert
    Saha, Santanu
    Goedecker, Stefan
    PHYSICAL REVIEW B, 2015, 92 (04):
  • [7] Neural network interatomic potential for the phase change material GeTe
    Sosso, Gabriele C.
    Miceli, Giacomo
    Caravati, Sebastiano
    Behler, Joerg
    Bernasconi, Marco
    PHYSICAL REVIEW B, 2012, 85 (17):
  • [8] Neural network interatomic potential for laser-excited materials
    Plettenberg, Pascal
    Bauerhenne, Bernd
    Garcia, Martin E.
    COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [9] Elaboration of a neural-network interatomic potential for silica glass and melt
    Trillot, Salome
    Lam, Julien
    Ispas, Simona
    Kandy, Akshay Krishna Ammothum
    Tuckerman, Mark E.
    Tarrat, Nathalie
    Benoit, Magali
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 236
  • [10] Stratified construction of neural network based interatomic models for multicomponent materials
    Hajinazar, Samad
    Shao, Junping
    Kolmogorov, Aleksey N.
    PHYSICAL REVIEW B, 2017, 95 (01)