Physics-Informed Neural Networks for Tissue Elasticity Reconstruction in Magnetic Resonance Elastography
被引:4
作者:
论文数: 引用数:
h-index:
机构:
Ragoza, Matthew
[1
]
Batmanghelich, Kayhan
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Boston, MA 02215 USAUniv Pittsburgh, Pittsburgh, PA 15213 USA
Batmanghelich, Kayhan
[2
]
机构:
[1] Univ Pittsburgh, Pittsburgh, PA 15213 USA
[2] Boston Univ, Boston, MA 02215 USA
来源:
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT X
|
2023年
/
14229卷
基金:
美国国家卫生研究院;
美国国家科学基金会;
关键词:
Physics-informed learning;
Magnetic resonance elastography;
Elasticity reconstruction;
Deep learning;
Medical imaging;
SHEAR MODULUS;
INVERSION;
STIFFNESS;
D O I:
10.1007/978-3-031-43999-5_32
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Magnetic resonance elastography (MRE) is a medical imaging modality that non-invasively quantifies tissue stiffness (elasticity) and is commonly used for diagnosing liver fibrosis. Constructing an elasticity map of tissue requires solving an inverse problem involving a partial differential equation (PDE). Current numerical techniques to solve the inverse problem are noise-sensitive and require explicit specification of physical relationships. In this work, we apply physics-informed neural networks to solve the inverse problem of tissue elasticity reconstruction. Our method does not rely on numerical differentiation and can be extended to learn relevant correlations from anatomical images while respecting physical constraints. We evaluate our approach on simulated data and in vivo data from a cohort of patients with non-alcoholic fatty liver disease (NAFLD). Compared to numerical baselines, our method is more robust to noise and more accurate on realistic data, and its performance is further enhanced by incorporating anatomical information.
机构:
Univ Arizona, Dept Biomed Engn, Coll Engn, Tucson, AZ USAUniv Arizona, Dept Biomed Engn, Coll Engn, Tucson, AZ USA
Kamali, Ali
;
论文数: 引用数:
h-index:
机构:
Sarabian, Mohammad
;
Laksari, Kaveh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arizona, Dept Biomed Engn, Coll Engn, Tucson, AZ USA
Univ Arizona, Dept Aerosp & Mech Engn, Coll Engn, Tucson, AZ USA
Dept Biomed Engn 335, Biosci Res Labs Bldg, Off 332,1230 N Cherry Ave, Tucson, AZ 85719 USAUniv Arizona, Dept Biomed Engn, Coll Engn, Tucson, AZ USA
机构:
Univ Arizona, Dept Biomed Engn, Coll Engn, Tucson, AZ USAUniv Arizona, Dept Biomed Engn, Coll Engn, Tucson, AZ USA
Kamali, Ali
;
论文数: 引用数:
h-index:
机构:
Sarabian, Mohammad
;
Laksari, Kaveh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arizona, Dept Biomed Engn, Coll Engn, Tucson, AZ USA
Univ Arizona, Dept Aerosp & Mech Engn, Coll Engn, Tucson, AZ USA
Dept Biomed Engn 335, Biosci Res Labs Bldg, Off 332,1230 N Cherry Ave, Tucson, AZ 85719 USAUniv Arizona, Dept Biomed Engn, Coll Engn, Tucson, AZ USA