Automated High-Throughput Fatigue Testing of Freestanding Thin Films

被引:11
作者
Barrios, Alejandro [1 ]
Kunka, Cody [1 ]
Nogan, John [1 ]
Hattar, Khalid [1 ,2 ]
Boyce, Brad L. [1 ]
机构
[1] Ctr Integrated Nanotechnol, Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA
基金
美国能源部;
关键词
fatigue; high-throughput; in situ scanning electron microscope; microfabrication; nanocrystalline; thin films; HIGH-CYCLE FATIGUE; MICROELECTROMECHANICAL SYSTEMS; NANOSCALE TENSILE; CRACK GROWTH; GRAIN-GROWTH; MEMS; MECHANISMS; PLASTICITY; STRESS; MICROSCALE;
D O I
10.1002/smtd.202201591
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Mechanical testing at small length scales has traditionally been resource-intensive due to difficulties with meticulous sample preparation, exacting load alignments, and precision measurements. Microscale fatigue testing can be particularly challenging due to the time-intensive, tedious repetition of single fatigue experiments. To mitigate these challenges, this work presents a new methodology for the high-throughput fatigue testing of thin films at the microscale. This methodology features a microelectromechanical systems-based Si carrier that can support the simultaneous and independent fatigue testing of an array of samples. To demonstrate this new technique, the microscale fatigue behavior of nanocrystalline Al is efficiently characterized via this Si carrier and automated fatigue testing with in situ scanning electron microscopy. This methodology reduces the total testing time by an order of magnitude, and the high-throughput fatigue results highlight the stochastic nature of the microscale fatigue response. This manuscript also discusses how this initial capability can be adapted to accommodate more samples, different materials, new geometries, and other loading modes.
引用
收藏
页数:12
相关论文
共 71 条
[61]  
Smith M., 2009, ABOUT US
[62]   Novel temperature dependent tensile test of freestanding copper thin film structures [J].
Smolka, M. ;
Motz, C. ;
Detzel, T. ;
Robl, W. ;
Griesser, T. ;
Wimmer, A. ;
Dehm, G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (06)
[63]   Mechanical Metamaterials and Their Engineering Applications [J].
Surjadi, James Utama ;
Gao, Libo ;
Du, Huifeng ;
Li, Xiang ;
Xiong, Xiang ;
Fang, Nicholas Xuanlai ;
Lu, Yang .
ADVANCED ENGINEERING MATERIALS, 2019, 21 (03)
[64]   Silicon as an anisotropic mechanical material: Deflection of thin crystalline plates [J].
Thomsen, Erik V. ;
Reck, Kasper ;
Skands, Gustav ;
Bertelsen, Christian ;
Hansen, Ole .
SENSORS AND ACTUATORS A-PHYSICAL, 2014, 220 :347-364
[65]   Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation [J].
Voyiadjis, George Z. ;
Yaghoobi, Mohammadreza .
CRYSTALS, 2017, 7 (10)
[66]   In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature [J].
Wang, Zhen ;
Wu, Wenwang ;
Qian, Guian ;
Sun, Lijuan ;
Li, Xide ;
Correia, Josea F. O. .
ENGINEERING FRACTURE MECHANICS, 2019, 214 :149-163
[67]   Understanding fatigue crack growth in aluminum alloys by in situ X-ray synchrotron tomography [J].
Williams, J. J. ;
Yazzie, K. E. ;
Padilla, E. ;
Chawla, N. ;
Xiao, X. ;
De Carlo, F. .
INTERNATIONAL JOURNAL OF FATIGUE, 2013, 57 :79-85
[68]   Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review [J].
Yu, Xianglong ;
Zhou, Ji ;
Liang, Haiyi ;
Jiang, Zhengyi ;
Wu, Lingling .
PROGRESS IN MATERIALS SCIENCE, 2018, 94 :114-173
[69]   Length-scale-controlled fatigue mechanisms in thin copper films [J].
Zhang, G. P. ;
Volkert, C. A. ;
Schwaiger, R. ;
Wellner, P. ;
Arzt, E. ;
Kraft, O. .
ACTA MATERIALIA, 2006, 54 (11) :3127-3139
[70]  
Zhang W., 2014, MECH SOLIDS STRUCTUR, V9