Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq

被引:4
|
作者
Raevskiy, Mikhail [1 ,2 ]
Yanvarev, Vladislav [1 ]
Jung, Sascha [3 ,4 ]
Del Sol, Antonio [3 ,4 ]
Medvedeva, Yulia A. [1 ,5 ,6 ]
机构
[1] Moscow Inst Phys & Technol, Dept Biol & Med Phys, Moscow 141701, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Ctr Cooperat Res Biosci, Computat Biol Lab, Derio 48160, Bizkaia, Spain
[4] Univ Luxembourg, Ctr Syst Biomed, L-4365 Luxembourg, Luxembourg
[5] Russian Acad Sci, Inst Bioengn, Res Ctr Biotechnol, Moscow 119071, Russia
[6] Natl Med Res Ctr Endocrinol, Moscow 117036, Russia
关键词
single cell RNA-seq; imputation; single cell ATAC-seq; EXPRESSION; ENHANCERS;
D O I
10.3390/ijms24076229
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-seq data contains a lot of dropouts hampering downstream analyses due to the low number and inefficient capture of mRNAs in individual cells. Here, we present Epi-Impute, a computational method for dropout imputation by reconciling expression and epigenomic data. Epi-Impute leverages single-cell ATAC-seq data as an additional source of information about gene activity to reduce the number of dropouts. We demonstrate that Epi-Impute outperforms existing methods, especially for very sparse single-cell RNA-seq data sets, significantly reducing imputation error. At the same time, Epi-Impute accurately captures the primary distribution of gene expression across cells while preserving the gene-gene and cell-cell relationship in the data. Moreover, Epi-Impute allows for the discovery of functionally relevant cell clusters as a result of the increased resolution of scRNA-seq data due to imputation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Feature Selection in Single-Cell RNA-seq Data via a Genetic Algorithm
    Chatzilygeroudis, Konstantinos I.
    Vrahatis, Aristidis G.
    Tasoulis, Sotiris K.
    Vrahatis, Michael N.
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 15, 2021, 12931 : 66 - 79
  • [42] Investigating the biology of yeast aging by single-cell RNA-seq
    Zhang, Yi
    Zhang, Xiannian
    Kennedy, Brian K.
    AGING-US, 2023, 15 (15): : 7340 - 7342
  • [43] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [44] Quantitative single-cell RNA-seq with unique molecular identifiers
    Islam, Saiful
    Zeisel, Amit
    Joost, Simon
    La Manno, Gioele
    Zajac, Pawel
    Kasper, Maria
    Lonnerberg, Peter
    Linnarsson, Sten
    NATURE METHODS, 2014, 11 (02) : 163 - +
  • [45] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [46] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [47] Single-Cell RNA-Seq Debiased Clustering via Batch Effect Disentanglement
    Li, Yunfan
    Lin, Yijie
    Hu, Peng
    Peng, Dezhong
    Luo, Han
    Peng, Xi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11371 - 11381
  • [48] Detecting Activated Cell Populations Using Single-Cell RNA-Seq
    Wu, Ye Emily
    Pan, Lin
    Zuo, Yanning
    Li, Xinmin
    Hong, Weizhe
    NEURON, 2017, 96 (02) : 313 - +
  • [49] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [50] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19