Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq

被引:4
|
作者
Raevskiy, Mikhail [1 ,2 ]
Yanvarev, Vladislav [1 ]
Jung, Sascha [3 ,4 ]
Del Sol, Antonio [3 ,4 ]
Medvedeva, Yulia A. [1 ,5 ,6 ]
机构
[1] Moscow Inst Phys & Technol, Dept Biol & Med Phys, Moscow 141701, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Ctr Cooperat Res Biosci, Computat Biol Lab, Derio 48160, Bizkaia, Spain
[4] Univ Luxembourg, Ctr Syst Biomed, L-4365 Luxembourg, Luxembourg
[5] Russian Acad Sci, Inst Bioengn, Res Ctr Biotechnol, Moscow 119071, Russia
[6] Natl Med Res Ctr Endocrinol, Moscow 117036, Russia
关键词
single cell RNA-seq; imputation; single cell ATAC-seq; EXPRESSION; ENHANCERS;
D O I
10.3390/ijms24076229
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA-seq data contains a lot of dropouts hampering downstream analyses due to the low number and inefficient capture of mRNAs in individual cells. Here, we present Epi-Impute, a computational method for dropout imputation by reconciling expression and epigenomic data. Epi-Impute leverages single-cell ATAC-seq data as an additional source of information about gene activity to reduce the number of dropouts. We demonstrate that Epi-Impute outperforms existing methods, especially for very sparse single-cell RNA-seq data sets, significantly reducing imputation error. At the same time, Epi-Impute accurately captures the primary distribution of gene expression across cells while preserving the gene-gene and cell-cell relationship in the data. Moreover, Epi-Impute allows for the discovery of functionally relevant cell clusters as a result of the increased resolution of scRNA-seq data due to imputation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The Advances of Single-Cell RNA-Seq in Kidney Immunology
    Zeng, Honghui
    Yang, Xiaoqiang
    Luo, Siweier
    Zhou, Yiming
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [22] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    CURRENT OSTEOPOROSIS REPORTS, 2024, 22 (05) : 433 - 440
  • [23] DSAE-Impute: Learning Discriminative Stacked Autoencoders for Imputing Single-cell RNA-seq Data
    Gan, Shengfeng
    Deng, Huan
    Qiu, Yang
    Alshahrani, Mohammed
    Liu, Shichao
    CURRENT BIOINFORMATICS, 2022, 17 (05) : 440 - 451
  • [24] Yeast Single-cell RNA-seq, Cell by Cell and Step by Step
    Nadal-Ribelles, Mariona
    Islam, Saiful
    Wei, Wu
    Latorre, Pablo
    Nguyen, Michelle
    de Nadal, Eulalia
    Posas, Francesc
    Steinmetz, Lars M.
    BIO-PROTOCOL, 2019, 9 (17):
  • [25] Integrative single-cell RNA-seq and ATAC-seq analysis of the evolutionary trajectory features of adipose-derived stem cells induced into astrocytes
    Long, Qingxi
    Yuan, Yi
    Ou, Ya
    Li, Wen
    Yan, Qi
    Zhang, Pingshu
    Yuan, Xiaodong
    JOURNAL OF NEUROCHEMISTRY, 2025, 169 (01)
  • [26] scRecover: Discriminating True and False Zeros in Single-Cell RNA-Seq Data for Imputation
    Miao, Zhun
    Lin, Xinyi
    Li, Jiaqi
    Ho, Joshua
    Meng, Qiuchen
    Zhang, Xuegong
    STATISTICS IN MEDICINE, 2025, 44 (05)
  • [27] Imputation method for single-cell RNA-seq data using neural topic model
    Qi, Yueyang
    Han, Shuangkai
    Tang, Lin
    Liu, Lin
    GIGASCIENCE, 2023, 12
  • [28] CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    Peijie Lin
    Michael Troup
    Joshua W. K. Ho
    Genome Biology, 18
  • [29] Integrating single-cell RNA-seq and imaging with SCOPE-seq2
    Liu, Zhouzerui
    Yuan, Jinzhou
    Lasorella, Anna
    Iavarone, Antonio
    Bruce, Jeffrey N.
    Canoll, Peter
    Sims, Peter A.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [30] CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    Lin, Peijie
    Troup, Michael
    Ho, Joshua W. K.
    GENOME BIOLOGY, 2017, 18