Stability and Convergence of L1-Galerkin Spectral Methods for the Nonlinear Time Fractional Cable Equation

被引:3
|
作者
Chen, Yanping [1 ]
Lin, Xiuxiu [1 ]
Zhang, Mengjuan [2 ]
Huang, Yunqing [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear fractional cable equation; spectral method; stability; error estimate; FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS; COLLOCATION METHOD; DIFFUSION; SCHEME;
D O I
10.4208/eajam.020521.140522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for the nonlinear fractional-order Cable equation with Riemann-Liouville fractional derivatives is constructed. Using finite difference discretizations in the time direction, we obtain a semi-discrete scheme. Applying spectral Galerkin discretizations in space direction to the equations of the semi-discrete systems, we construct a fully discrete method. The stability and errors of the methods are studied. Two numerical examples verify the theoretical results.
引用
收藏
页码:22 / 46
页数:25
相关论文
共 50 条