共 50 条
Stability and Convergence of L1-Galerkin Spectral Methods for the Nonlinear Time Fractional Cable Equation
被引:3
|作者:
Chen, Yanping
[1
]
Lin, Xiuxiu
[1
]
Zhang, Mengjuan
[2
]
Huang, Yunqing
[2
]
机构:
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Nonlinear fractional cable equation;
spectral method;
stability;
error estimate;
FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS;
COLLOCATION METHOD;
DIFFUSION;
SCHEME;
D O I:
10.4208/eajam.020521.140522
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A numerical scheme for the nonlinear fractional-order Cable equation with Riemann-Liouville fractional derivatives is constructed. Using finite difference discretizations in the time direction, we obtain a semi-discrete scheme. Applying spectral Galerkin discretizations in space direction to the equations of the semi-discrete systems, we construct a fully discrete method. The stability and errors of the methods are studied. Two numerical examples verify the theoretical results.
引用
收藏
页码:22 / 46
页数:25
相关论文