Stability and Convergence of L1-Galerkin Spectral Methods for the Nonlinear Time Fractional Cable Equation

被引:3
|
作者
Chen, Yanping [1 ]
Lin, Xiuxiu [1 ]
Zhang, Mengjuan [2 ]
Huang, Yunqing [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear fractional cable equation; spectral method; stability; error estimate; FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS; COLLOCATION METHOD; DIFFUSION; SCHEME;
D O I
10.4208/eajam.020521.140522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for the nonlinear fractional-order Cable equation with Riemann-Liouville fractional derivatives is constructed. Using finite difference discretizations in the time direction, we obtain a semi-discrete scheme. Applying spectral Galerkin discretizations in space direction to the equations of the semi-discrete systems, we construct a fully discrete method. The stability and errors of the methods are studied. Two numerical examples verify the theoretical results.
引用
收藏
页码:22 / 46
页数:25
相关论文
共 50 条
  • [31] A Posteriori Error Estimates of the Galerkin Spectral Methods for Space-Time Fractional Diffusion Equations
    Wang, Huasheng
    Chen, Yanping
    Huang, Yunqing
    Mao, Wenting
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (01) : 87 - 100
  • [32] L1 Fourier spectral methods for a class of generalized two-dimensional time fractional nonlinear anomalous diffusion equations
    Zheng, Rumeng
    Jiang, Xiaoyun
    Zhang, Hui
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (05) : 1515 - 1530
  • [33] A Space-Time Petrov-Galerkin Spectral Method for Time Fractional Diffusion Equation
    Sheng, Changtao
    Shen, Jie
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) : 854 - 876
  • [34] Muntz Spectral Methods for the Time-Fractional Diffusion Equation
    Hou, Dianming
    Hasan, Mohammad Tanzil
    Xu, Chuanju
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (01) : 43 - 62
  • [35] Efficient Galerkin finite element methods for a time-fractional Cattaneo equation
    An Chen
    Lijuan Nong
    Advances in Difference Equations, 2020
  • [37] High accuracy error estimates of a Galerkin finite element method for nonlinear time fractional diffusion equation
    Ren, Jincheng
    Shi, Dongyang
    Vong, Seakweng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (02) : 284 - 301
  • [38] A Fully Discrete Spectral Method for the Nonlinear Time Fractional Klein-Gordon Equation
    Chen, Hu
    Lu, Shujuan
    Chen, Wenping
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (01): : 231 - 251
  • [39] An L1 type difference/Galerkin spectral scheme for variable-order time-fractional nonlinear diffusion-reaction equations with fixed delay
    Zaky, M. A.
    Van Bockstal, K.
    Taha, T. R.
    Suragan, D.
    Hendy, A. S.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [40] Finite difference/spectral methods for the two-dimensional distributed-order time-fractional cable equation
    Zheng, Rumeng
    Liu, Fawang
    Jiang, Xiaoyun
    Turner, Ian W.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (06) : 1523 - 1537