Stability and Convergence of L1-Galerkin Spectral Methods for the Nonlinear Time Fractional Cable Equation

被引:3
|
作者
Chen, Yanping [1 ]
Lin, Xiuxiu [1 ]
Zhang, Mengjuan [2 ]
Huang, Yunqing [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear fractional cable equation; spectral method; stability; error estimate; FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS; COLLOCATION METHOD; DIFFUSION; SCHEME;
D O I
10.4208/eajam.020521.140522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for the nonlinear fractional-order Cable equation with Riemann-Liouville fractional derivatives is constructed. Using finite difference discretizations in the time direction, we obtain a semi-discrete scheme. Applying spectral Galerkin discretizations in space direction to the equations of the semi-discrete systems, we construct a fully discrete method. The stability and errors of the methods are studied. Two numerical examples verify the theoretical results.
引用
收藏
页码:22 / 46
页数:25
相关论文
共 50 条
  • [21] Unconditionally optimal convergence of a linearized Galerkin FEM for the nonlinear time-fractional mobile/immobile transport equation
    Guan, Zhen
    Wang, Jungang
    Liu, Ying
    Nie, Yufeng
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 133 - 156
  • [22] Efficient energy preserving Galerkin-Legendre spectral methods for fractional nonlinear Schrodinger equation with wave operator
    Hu, Dongdong
    Cai, Wenjun
    Gu, Xian-Ming
    Wang, Yushun
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 608 - 628
  • [23] Fractional Burgers equation with nonlinear non-locality: Spectral vanishing viscosity and local discontinuous Galerkin methods
    Mao, Zhiping
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 : 143 - 163
  • [24] Galerkin-Legendre spectral schemes for nonlinear space fractional Schrodinger equation
    Zhang, Hui
    Jiang, Xiaoyun
    Wang, Chu
    Fan, Wenping
    NUMERICAL ALGORITHMS, 2018, 79 (01) : 337 - 356
  • [25] Jacobi Spectral Galerkin and Iterated Methods for Nonlinear Volterra Integral Equation
    Yang, Yin
    Chen, Yanping
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (04):
  • [26] On the L∞ convergence of a conservative Fourier pseudo-spectral method for the space fractional nonlinear Schrodinger equation
    Xu, Zhuangzhi
    Cai, Wenjun
    Jiang, Chaolong
    Wang, Yushun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1591 - 1611
  • [27] Error Estimates of Spectral Galerkin Methods for a Linear Fractional Reaction–Diffusion Equation
    Zhongqiang Zhang
    Journal of Scientific Computing, 2019, 78 : 1087 - 1110
  • [28] General linear and spectral Galerkin methods for the Riesz space fractional diffusion equation
    Xu, Yang
    Zhang, Yanming
    Zhao, Jingjun
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 364 (364)
  • [29] Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order
    Wei, Leilei
    Liu, Lijie
    Sun, Huixia
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 59 (1-2) : 323 - 341
  • [30] Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order
    Leilei Wei
    Lijie Liu
    Huixia Sun
    Journal of Applied Mathematics and Computing, 2019, 59 : 323 - 341