Stability and Convergence of L1-Galerkin Spectral Methods for the Nonlinear Time Fractional Cable Equation

被引:3
|
作者
Chen, Yanping [1 ]
Lin, Xiuxiu [1 ]
Zhang, Mengjuan [2 ]
Huang, Yunqing [2 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear fractional cable equation; spectral method; stability; error estimate; FINITE DIFFERENCE/SPECTRAL APPROXIMATIONS; COLLOCATION METHOD; DIFFUSION; SCHEME;
D O I
10.4208/eajam.020521.140522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical scheme for the nonlinear fractional-order Cable equation with Riemann-Liouville fractional derivatives is constructed. Using finite difference discretizations in the time direction, we obtain a semi-discrete scheme. Applying spectral Galerkin discretizations in space direction to the equations of the semi-discrete systems, we construct a fully discrete method. The stability and errors of the methods are studied. Two numerical examples verify the theoretical results.
引用
收藏
页码:22 / 46
页数:25
相关论文
共 50 条
  • [1] Analysis of L1-Galerkin FEMs for Time-Fractional Nonlinear Parabolic Problems
    Li, Dongfang
    Liao, Hong-Lin
    Sun, Weiwei
    Wang, Jilu
    Zhang, Jiwei
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 24 (01) : 86 - 103
  • [2] Galerkin spectral method for nonlinear time fractional Cable equation with smooth and nonsmooth solutions
    Liu, Haiyu
    Lu, Shujuan
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 32 - 47
  • [3] UNCONDITIONALLY CONVERGENT L1-GALERKIN FEMS FOR NONLINEAR TIME-FRACTIONAL SCHRODINGER EQUATIONS
    Li, Dongfang
    Wang, Jilu
    Zhang, Jiwei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06): : A3067 - A3088
  • [4] Global consistency analysis of L1-Galerkin spectral schemes for coupled nonlinear space-time fractional Schrodinger equations
    Hendy, Ahmed S.
    Zaky, Mahmoud A.
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 276 - 302
  • [5] STABILITY AND CONVERGENCE OF TWO NEW IMPLICIT NUMERICAL METHODS FOR THE FRACTIONAL CABLE EQUATION
    Liu, F.
    Yang, Q.
    Turner, I.
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1015 - 1024
  • [6] Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    APPLIED NUMERICAL MATHEMATICS, 2017, 119 : 51 - 66
  • [7] Uniform stability of spectral nonlinear Galerkin methods
    He, YN
    Li, KT
    Zhao, CS
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (05) : 723 - 741
  • [8] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [9] A Linearized L1-Galerkin FEM for Non-smooth Solutions of Kirchhoff Type Quasilinear Time-Fractional Integro-Differential Equation
    Kumar, Lalit
    Sista, Sivaji Ganesh
    Sreenadh, Konijeti
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (02)
  • [10] A Linearized L1-Galerkin FEM for Non-smooth Solutions of Kirchhoff Type Quasilinear Time-Fractional Integro-Differential Equation
    Lalit Kumar
    Sivaji Ganesh Sista
    Konijeti Sreenadh
    Journal of Scientific Computing, 2023, 96