A copula-based set-variant association test for bivariate continuous, binary or mixed phenotypes

被引:0
作者
St-Pierre, Julien [1 ]
Oualkacha, Karim [2 ]
机构
[1] McGill Univ, Dept Epidemiol Biostat & Occupat Hlth, Montreal, PQ, Canada
[2] Univ Quebec Montreal, Dept Math, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 英国惠康基金;
关键词
copulas; generalized linear mixed models; gene-based tests; mixed binary-continuous phenotypes; statistical genetics; variance component score test; PRINCIPAL-COMPONENTS; MULTIPLE TRAITS; RARE VARIANTS; PLEIOTROPY; HERITABILITY; MODELS; POWER;
D O I
10.1515/ijb-2022-0010
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In genome wide association studies (GWAS), researchers are often dealing with dichotomous and non-normally distributed traits, or a mixture of discrete-continuous traits. However, most of the current region-based methods rely on multivariate linear mixed models (mvLMMs) and assume a multivariate normal distribution for the phenotypes of interest. Hence, these methods are not applicable to disease or non-normally distributed traits. Therefore, there is a need to develop unified and flexible methods to study association between a set of (possibly rare) genetic variants and non-normal multivariate phenotypes. Copulas are multivariate distribution functions with uniform margins on the [0, 1] interval and they provide suitable models to deal with non-normality of errors in multivariate association studies. We propose a novel unified and flexible copula-based multivariate association test (CBMAT) for discovering association between a genetic region and a bivariate continuous, binary or mixed phenotype. We also derive a data-driven analytic p-value procedure of the proposed region-based score-type test. Through simulation studies, we demonstrate that CBMAT has well controlled type I error rates and higher power to detect associations compared with other existing methods, for discrete and non-normally distributed traits. At last, we apply CBMAT to detect the association between two genes located on chromosome 11 and several lipid levels measured on 1477 subjects from the ASLPAC study.
引用
收藏
页码:369 / 387
页数:19
相关论文
共 42 条
[1]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[2]  
[Anonymous], 1980, Applied Statistics
[3]   Maximizing the Power of Principal-Component Analysis of Correlated Phenotypes in Genome-wide Association Studies [J].
Aschard, Hugues ;
Vilhjalmsson, Bjarni J. ;
Greliche, Nicolas ;
Morange, Pierre-Emmanuel ;
Tregouet, David-Alexandre ;
Kraft, Peter .
AMERICAN JOURNAL OF HUMAN GENETICS, 2014, 94 (05) :662-676
[4]   Rank-Based Inverse Normal Transformations are Increasingly Used, But are They Merited? [J].
Beasley, T. Mark ;
Erickson, Stephen ;
Allison, David B. .
BEHAVIOR GENETICS, 2009, 39 (05) :580-595
[5]   Cohort Profile: The 'Children of the 90s'-the index offspring of the Avon Longitudinal Study of Parents and Children [J].
Boyd, Andy ;
Golding, Jean ;
Macleod, John ;
Lawlor, Debbie A. ;
Fraser, Abigail ;
Henderson, John ;
Molloy, Lynn ;
Ness, Andy ;
Ring, Susan ;
Smith, George Davey .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2013, 42 (01) :111-127
[6]   Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease [J].
Crosby, Jacy ;
Peloso, Gina M. ;
Auer, Paul L. ;
Crosslin, David R. ;
Stitziel, Nathan O. ;
Lange, Leslie A. ;
Lu, Yingchang ;
Tang, Zheng-zheng ;
Zhang, He ;
Hindy, George ;
Masca, Nicholas ;
Stirrups, Kathleen ;
Kanoni, Stavroula ;
Do, Ron ;
Jun, Goo ;
Hu, Youna ;
Kang, Hyun Min ;
Xue, Chenyi ;
Goel, Anuj ;
Farrall, Martin ;
Duga, Stefano ;
Merlini, Pier Angelica ;
Asselta, Rosanna ;
Girelli, Domenico ;
Olivieri, Oliviero ;
Martinelli, Nicola ;
Yin, Wu ;
Reilly, Dermot ;
Speliotes, Elizabeth ;
Fox, Caroline S. ;
Hveem, Kristian ;
Holmen, Oddgeir L. ;
Nikpay, Majid ;
Farlow, Deborah N. ;
Assimes, Themistocles L. ;
Franceschini, Nora ;
Robinson, Jennifer ;
North, Kari E. ;
Martin, Lisa W. ;
DePristo, Mark ;
Gupta, Namrata ;
Escher, Stefan A. ;
Jansson, Jan-Hakan ;
Van Zuydam, Natalie ;
Palmer, Colin N. A. ;
Wareham, Nicholas ;
Koch, Werner ;
Meitinger, Thomas ;
Peters, Annette ;
Lieb, Wolfgang .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (01) :22-31
[7]  
Cuvelier E, 2005, APPL STOCH MODEL BUS
[8]   Copula-based regression models for a bivariate mixed discrete and continuous outcome [J].
de Leon, A. R. ;
Wu, B. .
STATISTICS IN MEDICINE, 2011, 30 (02) :175-185
[9]   Multi-SKAT: General framework to test for rare-variant association with multiple phenotypes [J].
Dutta, Diptavo ;
Scott, Laura ;
Boehnke, Michael ;
Lee, Seunggeun .
GENETIC EPIDEMIOLOGY, 2019, 43 (01) :4-23
[10]   Hereditary Apolipoprotein Al-Associated Amyloidosis in Surgical Pathology Specimens Identification of Three Novel Mutations in the APOA1 Gene [J].
Eriksson, Magdalena ;
Schoenland, Stefan ;
Yumlu, Saniye ;
Hegenbart, Ute ;
von Hutten, Hanna ;
Gioeva, Zarina ;
Lohse, Peter ;
Buettner, Janine ;
Schmidt, Hartmut ;
Roecken, Christoph .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2009, 11 (03) :257-262