Fitted modifications of Runge-Kutta-Nystrom pairs of orders 7(5) for addressing oscillatory problems

被引:8
作者
Kovalnogov, Vladislav N. [1 ]
Kornilova, Maria, I [1 ]
Khakhalev, Yuri A. [1 ]
Generalov, Dmitry A. [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, 32 Severny Venetz St, Ulyanovsk 432027, Russia
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Univ Western Macedonia, Dept Math, Kastoria 52100, Greece
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Dept Civil Engn, Sect Math, GR-67100 Xanthi, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Dept, Euboea 34400, Psahna, Greece
关键词
initial value problem; numerical solution; periodic problems; Runge-Kutta-Nystrom;
D O I
10.1002/mma.8510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Runge-Kutta-Nystrom pair of orders 7(5) using six stages per step have been discovered very recently. Here we modify four of its weights. The resulting method integrates exactly the harmonic oscillator psi ''=-mu(2)psi,mu is an element of R, which serves as model problem. The new weights are O(mu(2)) perturbations of the original ones. Order reduction which is usually present in such modifications is avoided. Numerical results over standard six stages pairs justify our efforts.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 42 条
[31]   Construction of trigonometrically and exponentially fitted Runge-Kutta-Nystrom methods for the numerical solution of the Schrodinger equation and related problems a method of 8th algebraic order [J].
Kalogiratou, Z ;
Simos, TE .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2002, 31 (02) :211-232
[32]   An optimized explicit Runge-Kutta-Nystrom method for the numerical solution of orbital and related periodical initial value problems [J].
Kosti, A. A. ;
Anastassi, Z. A. ;
Simos, T. E. .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (03) :470-479
[33]   Evolutionary derivation of Runge-Kutta pairs for addressing inhomogeneous linear problems [J].
Simos, T. E. ;
Tsitouras, Ch .
NUMERICAL ALGORITHMS, 2021, 87 (02) :511-525
[34]   Development of an Efficient Diagonally Implicit Runge-Kutta-Nystrom 5(4) Pair for Special Second Order IVPs [J].
Demba, Musa Ahmed ;
Senu, Norazak ;
Ramos, Higinio ;
Watthayu, Wiboonsak .
AXIOMS, 2022, 11 (10)
[35]   Evolutionary Derivation of Runge-Kutta Pairs of Orders 5(4) Specially Tuned for Problems with Periodic Solutions [J].
Kovalnogov, Vladislav N. ;
Fedorov, Ruslan V. ;
Chukalin, Andrey V. ;
Simos, Theodore E. ;
Tsitouras, Charalampos .
MATHEMATICS, 2021, 9 (18)
[36]   A Neural Network Type Approach for Constructing Runge-Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions [J].
Jerbi, Houssem ;
Ben Aoun, Sondess ;
Omri, Mohamed ;
Simos, Theodore E. ;
Tsitouras, Charalampos .
MATHEMATICS, 2022, 10 (05)
[37]   A RUNGE-KUTTA-NYSTROM METHOD FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
SIMOS, TE ;
DIMAS, E ;
SIDERIDIS, AB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 51 (03) :317-326
[38]   Trigonometrically fitted three-derivative Runge-Kutta methods for solving oscillatory initial value problems [J].
Li, Jiyong .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 330 :103-117
[39]   RUNGE-KUTTA-NYSTROM INTERPOLANTS FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
SIMOS, TE .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (12) :7-15
[40]   Runge-Kutta Pairs of Orders 6(5) with Coefficients Trained to Perform Best on Classical Orbits [J].
Shen, Yu-Cheng ;
Lin, Chia-Liang ;
Simos, Theodore E. ;
Tsitouras, Charalampos .
MATHEMATICS, 2021, 9 (12)