Fitted modifications of Runge-Kutta-Nystrom pairs of orders 7(5) for addressing oscillatory problems

被引:8
作者
Kovalnogov, Vladislav N. [1 ]
Kornilova, Maria, I [1 ]
Khakhalev, Yuri A. [1 ]
Generalov, Dmitry A. [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, 32 Severny Venetz St, Ulyanovsk 432027, Russia
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Univ Western Macedonia, Dept Math, Kastoria 52100, Greece
[4] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[5] Democritus Univ Thrace, Dept Civil Engn, Sect Math, GR-67100 Xanthi, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Dept, Euboea 34400, Psahna, Greece
关键词
initial value problem; numerical solution; periodic problems; Runge-Kutta-Nystrom;
D O I
10.1002/mma.8510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Runge-Kutta-Nystrom pair of orders 7(5) using six stages per step have been discovered very recently. Here we modify four of its weights. The resulting method integrates exactly the harmonic oscillator psi ''=-mu(2)psi,mu is an element of R, which serves as model problem. The new weights are O(mu(2)) perturbations of the original ones. Order reduction which is usually present in such modifications is avoided. Numerical results over standard six stages pairs justify our efforts.
引用
收藏
页码:273 / 282
页数:10
相关论文
共 42 条
[21]   A Phase-Fitted and Amplification-Fitted Explicit Runge-Kutta-Nystrom Pair for Oscillating Systems [J].
Demba, Musa Ahmed ;
Ramos, Higinio ;
Kumam, Poom ;
Watthayu, Wiboonsak .
MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (03)
[22]   Construction of an optimized explicit Runge-Kutta-Nystrom method for the numerical solution of oscillatory initial value problems [J].
Kosti, A. A. ;
Anastassi, Z. A. ;
Simos, T. E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (11) :3381-3390
[23]   A Fitted Runge-Kutta-Nystrom Method with Six Stages for the Integration of the Two-Body Problem [J].
Kosti, A. A. ;
Anastassi, Z. A. ;
Simos, T. E. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
[24]   Runge-Kutta pairs of orders 8(7) with extended stability regions for addressing linear inhomogeneous systems [J].
Busygin, Sergey ;
Fedorov, Ruslan ;
Karpukhina, Tamara ;
Kovalnogov, Vladislav N. ;
Simos, Theodore E. ;
Tsitouras, Charalampos .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) :4212-4224
[25]   A New Fourth-Order Four Stage Explicit Trigonometrically-Fitted Runge-Kutta-Nystrom Method for Solving Periodic Problems [J].
Demba, Musa A. ;
Senu, Norazak ;
Ismail, Fudziah .
INNOVATIONS THROUGH MATHEMATICAL AND STATISTICAL RESEARCH: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS (ICMSS2016), 2016, 1739
[26]   A 6(4) optimized embedded Runge-Kutta-Nystrom pair for the numerical solution of periodic problems [J].
Anastassi, Z. A. ;
Kosti, A. A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 :311-320
[27]   Collocation Runge-Kutta-Nystrom methods for solving second-order initial value problems [J].
Hoang, N. S. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (12) :2423-2444
[28]   Exponentially Fitted and Trigonometrically Fitted Two-Derivative Runge-Kutta-Nystrom Methods for Solving y"(x) = f (x, y, y′) [J].
Mohamed, Tahani Salama ;
Senu, Norazak ;
Ibrahim, Zarina Bibi ;
Long, Nik Mohd Asri Nik .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
[29]   Evolutionary derivation of Runge–Kutta pairs for addressing inhomogeneous linear problems [J].
T. E. Simos ;
Ch. Tsitouras .
Numerical Algorithms, 2021, 87 :511-525
[30]   NEURAL NETWORK-BASED DERIVATION OF EFFICIENT HIGH-ORDER RUNGE-KUTTA-NYSTROM PAIRS FOR THE INTEGRATION OF ORBITS [J].
Famelis, I. Th. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (12) :1309-1316