共 50 条
Targeted gene delivery to the brain using CDX-modified chitosan nanoparticles
被引:5
|作者:
Sepasi, Tina
[1
]
Bani, Farhad
[1
,2
]
Rahbarghazi, Reza
[3
,4
]
Ebrahimi-Kalan, Abbas
[5
]
Sadeghi, Mohammad-Reza
[6
]
Alamolhoda, Seyedeh Zahra
[7
]
Zarebkohan, Amir
[1
,2
]
Ghadiri, Tahereh
[5
]
Gao, Huile
[8
,9
]
机构:
[1] Tabriz Univ Med Sci, Adv Fac Med Sci, Dept Med Nanotechnol, Tabriz, Iran
[2] Tabriz Univ Med Sci, Drug Appl Res Ctr, Tabriz, Iran
[3] Tabriz Univ Med Sci, Stem Cell Res Ctr, Tabriz, Iran
[4] Tabriz Univ Med, Adv Fac Med Sci, Dept Appl Cell Sci, Tabriz, Iran
[5] Tabriz Univ Med Sci, Adv Fac Med Sci, Dept Neurosci & Cognit, Tabriz, Iran
[6] Tabriz Univ Med, Adv Fac Med Sci, Dept Mol Med, Tabriz, Iran
[7] Tabriz Univ Med Sci, Adv Fac Med Sci, Dept Med Biotechnol, Tabriz, Iran
[8] Sichuan Univ, Key Lab DrugTargeting & Drug Delivery Syst, Sichuan Engn Lab Plant Sourced Drug, Educ Minist, Chengdu 610064, Peoples R China
[9] Sichuan Univ, Sichuan Res Ctr Drug Precis Ind Technol, West China Sch Pharm, Chengdu 610064, Peoples R China
来源:
基金:
美国国家科学基金会;
关键词:
Targeted gene delivery;
Brain;
CDX;
Chitosan;
Nanoparticles;
DRUG-DELIVERY;
ACETYLCHOLINE-RECEPTORS;
ACTIVATION;
BARRIER;
VECTORS;
PEPTIDE;
PATHWAY;
SYSTEM;
CELLS;
CROSS;
D O I:
10.34172/bi.2022.23876
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
Introduction: Blood-brain barrier with strictly controlled activity participates in a coordinated transfer of bioactive molecules from the blood to the brain. Among different delivery approaches, gene delivery is touted as a promising strategy for the treatment of several nervous system disorders. The transfer of exogenous genetic elements is limited by the paucity of suitable carriers. As a correlate, designing high-efficiency biocarriers for gene delivery is challenging. This study aimed to deliver pEGFP-N1 plasmid into the brain parenchyma using CDX-modified chitosan (CS) nanoparticles (NPs). Methods: Herein, we attached CDX, a 16 amino acids peptide, to the CS polymer using bifunctional polyethylene glycol (PEG) formulated with sodium tripolyphosphate (TPP), by ionic gelation method. Developed NPs and their nanocomplexes with pEGEP-N1 (CS-PEG-CDX/REGFP) were characterized using DLS, NMR, ETIR, and TIM analyses. For in vitro assays, a rat C6 glioma cell line was used for cell internalization efficiency. The biodistribution and brain localization of nanocomplexes were studied in a mouse model after intraperitoneal injection using in vivo imaging and fluorescent microscopy. Results: Our results showed that CS-PEG-CDX/pEGFP NPs were uptaken by glioma cells in a dose-dependent manner. In vivo imaging revealed successful entry into the brain parenchyma indicated with the expression of green fluorescent protein (GFP) as a reporter protein. However, the biodistribution of developed NPs was also evident in other organs especially the spleen, liver, heart, and kidneys. Conclusion: Based on our results, CS-PEG-CDX NPs can provide a safe and effective nanocarrier for brain gene delivery into the central nervous system (CNS).
引用
收藏
页码:133 / 144
页数:12
相关论文