The Riemann-Liouville fractional integral in Bochner-Lebesgue spaces II

被引:3
作者
Neto, Paulo Mendes Carvalho [1 ]
Junior, Renato Fehlberg [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Math, Florianopolis, SC, Brazil
[2] Univ Fed Espirito Santo, Dept Math, Vitoria, ES, Brazil
关键词
Riemann-Liouville fractional integral; Hardy-Littlewood Theorem; Bochner-Lebesgue space; Bounded operator; Compact operators;
D O I
10.1007/s13540-024-00255-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the Riemann-Liouville fractional integral of order a is an element of(0, 1/p) as an operator from L-p(I; X) into L-q (I; X), with 1 <= q <= p/(1-p alpha), whether I = [t(0), t(1)] or I = [t(0), infinity) and X is a Banach space. Our main result provides necessary and sufficient conditions to ensure the compactness of the Riemann-Liouville fractional integral from L-p(t(0), t(1); X) into L-q(t(0), t(1); X), when 1 <= q < p/(1 - p alpha).
引用
收藏
页码:1348 / 1368
页数:21
相关论文
共 20 条
[1]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[2]  
Bennett C., 1988, INTERPOLATION OPERAT, V129 of
[3]  
Bergh Joran., 1976, Interpolation Spaces, DOI [DOI 10.1007/978-3-642-66451-9, 10.10 07/978-3-642-66451-9]
[4]   On the fractional version of Leibniz rule [J].
de Carvalho Neto, Paulo M. ;
Fehlberg Junior, Renato .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (04) :670-700
[5]   THE MEAN VALUE THEOREMS AND A NAGUMO-TYPE UNIQUENESS THEOREM FOR CAPUTO'S FRACTIONAL CALCULUS (vol 15, pg 304, 2012) [J].
Diethelm, Kai .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (06) :1567-1570
[6]   The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's fractional calculus [J].
Diethelm, Kai .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (02) :304-313
[7]  
Edmunds DE., 2022, BOUNDED COMPACT INTE
[8]  
Gorenflo R., 1991, Abel Integral Equations: Analisys and Applications, DOI [10.1007/BFb0084665, DOI 10.1007/BFB0084665]
[9]  
Grafakos Loukas., 2014, Classical Fourier Analysis, Vthird, DOI DOI 10.1007/978-1-4939-1194-3
[10]  
Hardy G.H., 1934, INEQUALITIES