Beam-wise dose composition learning for head and neck cancer dose prediction in radiotherapy

被引:7
作者
Teng, Lin [1 ]
Wang, Bin [1 ]
Xu, Xuanang [3 ]
Zhang, Jiadong [1 ]
Mei, Lanzhuju [1 ]
Feng, Qianjin [2 ]
Shen, Dinggang [1 ,4 ,5 ]
机构
[1] ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China
[3] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
[4] Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai 200230, Peoples R China
[5] Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
关键词
Radiation therapy; Head and neck cancer; Dose prediction; Beam-wise dose learning; Dose-volume histogram; INTENSITY-MODULATED RADIOTHERAPY; TREATMENT PLAN QUALITY; IMRT; REGISTRATION; INFORMATION; MODELS;
D O I
10.1016/j.media.2023.103045
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic and accurate dose distribution prediction plays an important role in radiotherapy plan. Although previous methods can provide promising performance, most methods did not consider beam-shaped radiation of treatment delivery in clinical practice. This leads to inaccurate prediction, especially on beam paths. To solve this problem, we propose a beam-wise dose composition learning (BDCL) method for dose prediction in the context of head and neck (H&N) radiotherapy plan. Specifically, a global dose network is first utilized to predict coarse dose values in the whole-image space. Then, we propose to generate individual beam masks to decompose the coarse dose distribution into multiple field doses, called beam voters, which are further refined by a subsequent beam dose network and reassembled to form the final dose distribution. In particular, we design an overlap consistency module to keep the similarity of high-level features in overlapping regions between different beam voters. To make the predicted dose distribution more consistent with the real radiotherapy plan, we also propose a dose-volume histogram (DVH) calibration process to facilitate feature learning in some clinically concerned regions. We further apply an edge enhancement procedure to enhance the learning of the extracted feature from the dose falloff regions. Experimental results on a public H&N cancer dataset from the AAPM OpenKBP challenge show that our method achieves superior performance over other state-of-the-art approaches by significant margins. Source code is released at https: //github.com/TL9792/BDCLDosePrediction.
引用
收藏
页数:10
相关论文
共 53 条
[1]  
Aaron Babier B.Z., 2020, Openkbp CodaLab
[2]   Automatic learning-based beam angle selection for thoracic IMRT [J].
Amit, Guy ;
Purdie, Thomas G. ;
Levinshtein, Alex ;
Hope, Andrew J. ;
Lindsay, Patricia ;
Marshall, Andrea ;
Jaffray, David A. ;
Pekar, Vladimir .
MEDICAL PHYSICS, 2015, 42 (04) :1992-2005
[3]   OpenKBP-Opt: an international and reproducible evaluation of 76 knowledge-based planning pipelines [J].
Babier, Aaron ;
Mahmood, Rafid ;
Zhang, Binghao ;
Alves, Victor G. L. ;
Barragan-Montero, Ana Maria ;
Beaudry, Joel ;
Cardenas, Carlos E. ;
Chang, Yankui ;
Chen, Zijie ;
Chun, Jaehee ;
Diaz, Kelly ;
Eraso, Harold David ;
Faustmann, Erik ;
Gaj, Sibaji ;
Gay, Skylar ;
Gronberg, Mary ;
Guo, Bingqi ;
He, Junjun ;
Heilemann, Gerd ;
Hira, Sanchit ;
Huang, Yuliang ;
Ji, Fuxin ;
Jiang, Dashan ;
Giraldo, Jean Carlo Jimenez ;
Lee, Hoyeon ;
Lian, Jun ;
Liu, Shuolin ;
Liu, Keng-Chi ;
Marrugo, Jose ;
Miki, Kentaro ;
Nakamura, Kunio ;
Netherton, Tucker ;
Dan Nguyen ;
Nourzadeh, Hamidreza ;
Osman, Alexander F., I ;
Peng, Zhao ;
Quinto Munoz, Jose Dario ;
Ramsl, Christian ;
Rhee, Dong Joo ;
Rodriguez, Juan David ;
Shan, Hongming ;
Siebers, Jeffrey, V ;
Soomro, Mumtaz H. ;
Sun, Kay ;
Usuga Hoyos, Andres ;
Valderrama, Carlos ;
Verbeek, Rob ;
Wang, Enpei ;
Willems, Siri ;
Wu, Qi .
PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (18)
[4]   OpenKBP: The open-access knowledge-based planning grand challenge and dataset [J].
Babier, Aaron ;
Zhang, Binghao ;
Mahmood, Rafid ;
Moore, Kevin L. ;
Purdie, Thomas G. ;
McNiven, Andrea L. ;
Chan, Timothy C. Y. .
MEDICAL PHYSICS, 2021, 48 (09) :5549-5561
[5]   Knowledge-based automated planning with three-dimensional generative adversarial networks [J].
Babier, Aaron ;
Mahmood, Rafid ;
McNiven, Andrea L. ;
Diamant, Adam ;
Chan, Timothy C. Y. .
MEDICAL PHYSICS, 2020, 47 (02) :297-306
[6]   Models for predicting objective function weights in prostate cancer IMRT [J].
Boutilier, Justin J. ;
Lee, Taewoo ;
Craig, Tim ;
Sharpe, Michael B. ;
Chan, Timothy C. Y. .
MEDICAL PHYSICS, 2015, 42 (04) :1586-1595
[7]   Neural network dose models for knowledge-based planning in pancreatic SBRT [J].
Campbell, Warren G. ;
Miften, Moyed ;
Olsen, Lindsey ;
Stumpf, Priscilla ;
Schefter, Tracey ;
Goodman, Karyn A. ;
Jones, Bernard L. .
MEDICAL PHYSICS, 2017, 44 (12) :6148-6158
[8]   Knowledge-based IMRT treatment planning for prostate cancer [J].
Chanyavanich, Vorakarn ;
Das, Shiva K. ;
Lee, William R. ;
Lo, Joseph Y. .
MEDICAL PHYSICS, 2011, 38 (05) :2515-2522
[9]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[10]   3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture [J].
Dan Nguyen ;
Jia, Xun ;
Sher, David ;
Lin, Mu-Han ;
Iqbal, Zohaib ;
Liu, Hui ;
Jiang, Steve .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (06)